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Clustering

● Suppose that the data was generated from a 
number of different classes. 

● Objective: cluster data that belongs to the same 
class

● Grouping C objects into K clusters is one of 
canonical problem in unsupervised learning



  

The k-means algorithm
● Assume the data lives in a Euclidean 

space.
● Assume we want k classes.
● Assume we start with randomly 

located cluster centers

    The algorithm alternates between two 
steps:

     Assignment step: Assign each 
datapoint to the closest cluster.

     Refitting step: Move each cluster 
center to the center of gravity of the 
data assigned to it.

Assignments

Refitted 
means



  

Why K-means converges

● Whenever an assignment is changed, the 
sum of squared distances of data points from 
their assigned cluster is reduced

● Whenever a cluster centre is moved, the sum 
of squared distances of the datapoint from 
their currently assigned cluster centre is 
reduced

● If the assignment do not change in the 
assignment step, we have converged (to at 
least a local minimum)



  

K-means algorithm
● Initialization : set k means {s_k} to random 

values
● Assignment : each datapoint c assigned to 

nearest mean  

● Responsibilities : responsibility r for the cluster 
k is set to 1 iff that particular data point is 
assigned is closest to centre of cluster k

● Update: Move the cluster towards the centre of 
the gravity of its data



  

Local minima

● There is nothing to prevent 
k-means getting stuck at 
local minima.

● We could try many random 
starting points

● We could try non-local split-
and-merge moves: 
Simultaneously merge two 
nearby clusters and split a 
big cluster into two.

A bad local optimum



  

Soft k-means

● Responsibilities : responsibility r for the cluster k 
is set to 1 iff that particular data point is assigned 
is closest to centre of cluster k  

● Update: Move the cluster towards the centre of 
the gravity of its data



  

A generative view of clustering

● We need a sensible measure of what it means to cluster the 
data well.
– This makes it possible to judge different methods. 
– It may make it possible to decide on the number of 

clusters.
● An obvious approach is to imagine that the data was produced 

by a generative model.
– Then we can adjust the parameters of the model to 

maximize the probability density that it would produce 
exactly the data we observed.



  

Fitting a mixture of Gaussians

● Optimization uses the 
Expectation Maximization 
Algorithm

● E-step: compute the posterior 
probability that each Gaussian 
generates data points

● M-step: Assuming that the data 
really was generated this way, 
change the parameters of each 
Gaussian to maximize the 
probability that it would generate 
the data it is currently 
responsible for



  

The E-step: Computing responsibilities

● In order to adjust the 
parameters, we must first 
solve the inference 
problem: Which Gaussian 
generated each 
datapoint?
– We cannot be sure, so 

it’s a distribution over 
all possibilities.

● Use Bayes theorem to get 
posterior probabilities 



  

The M-step: Computing new mixing 
proportion

● Each Gaussian gets a 
certain amount of posterior 
probability for each 
datapoint

● The optimal mixing 
proportion to use (given 
these posterior 
probabilities) is just the 
fraction of the data that the 
Gaussian gets 
responsibility for.



  

More M-step: Computing the new means

● We just take the center-of 
gravity of the data that the 
Gaussian is responsible for.
– Just like in K-means, 

except the data is 
weighted by the posterior 
probability of the 
Gaussian.

– Guaranteed to lie in the 
convex hull of the data

● Could be big initial jump



  

More M-step: Computing the new 
variance

● We fit the variance of 
each Gaussian, i, on 
each dimension, d, to 
the posterior-
weighted data.

● The formula only 
considers diagonal 
elements of the full-
covariance matrix.



  

How many Gaussians do we use?

● Hold back a validation set.
– Try various numbers of Gaussians
– Pick the number that gives the highest density to the 

validation set.
● Refinements:

– We could make the validation set smaller by using several 
different validation sets and averaging the performance.

– We should use all of the data for a final training of the 
parameters once we have decided on the best number of 
Gaussians.



  

Visualizing a Mixture of Gaussian

● EM algorithm can easily 
get stuck in the local 
minima

● Better to have large 
Gaussian and gradually 
decrease 



  

Speeding up the fitting

● If we have huge amounts of data, speed is very important. 
Some tricks are:
– Initialize the Gaussians using k-means

● Makes it easy to get trapped.
● Initialize K-means using a subset of the datapoints so that the 

means lie on the low-dimensional manifold.
– Find the Gaussians near a datapoint more efficiently.

● Use a KD-tree to quickly eliminate distant Gaussians from 
consideration.

– Fit Gaussians greedily
● Steal some mixing proportion from the already fitted Gaussians and 

use it to fit poorly modeled datapoints better.



  

How do we know that the updates 
improve things?

● Updating each Gaussian definitely improves the 
probability of generating the data IF we generate 
it from the same Gaussian after parameter 
updates. 
– But the posterior will changes when we apply E-step

● A good way to show that updating each 
Gaussian helps is to show that there is a single 
function that is improved by both EM step.
– Free energy 



  

Why EM converges
● There is a cost function that is reduced by both the E-step and the 

M-step. 

                 Cost  =  expected energy  –  entropy

● The expected energy term measures how difficult it is to generate 
each datapoint from the Gaussians it is assigned to. It would be 
happiest giving all the responsibility for each datapoint to the most 
likely Gaussian (as in K-means).

● The entropy term encourages “soft” assignments. It would be 
happiest spreading the responsibility for each datapoint equally 
between all the Gaussians.



  

The expected energy of the 
datapoint

● The expected energy of datapoint c is the 
average of negative log probability of 
generating the data
– The average is taken using the probabilities of 

assigning the datapoint to each Gaussian

– What probability distribution should we use for the 
distribution q 



  

The entropy term

● This term wants the responsibilities to be as 
uniform as possible.

● It fights the expected energy term.



  

The E-step chooses assignment 
probabilities that minimize free 

energy 
● The assignment probability of datapoint that 

minimizes the cost and sums to 1
● The optimal solution to the trade-off between 

expected energy and entropy is to make the 
probabilities be proportional to the exponential 
of negative energies:

● So using the posterior probabilities as 
assignment probabilities minimizes the cost 
function



  

The M-step chooses the parameters that 
minimize the cost function  

(with the responsibilities held fixed)

● This is easy. We just fit each Gaussian to the data weighted by 
the responsibilities that the Gaussian has for the data. 
– When you fit a Gaussian to data you are maximizing the 

log probability of the data given the Gaussian. This is the 
same as minimizing the energies of the datapoints that the 
Gaussian is responsible for.

– If a Gaussian has a responsibility of 0.7 for a datapoint the 
fitting treats it as 0.7 of an observation.

● Since both the E-step and the M-step decrease the same cost 
function, EM converges.



  

● We can think of E-step as finding the best 
distribution over hidden configurations for each 
data points

● The M-step holds the distribution fixed and 
minimizes the F by changing the parameters 
that determines the energy of a configuration

 



  

● Credit for slides: Richard Zemel, Geoffery 
Hinton

● I have adapted their slides for our class
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