Imitation learning to understand behaviour

Daniel Jiwoong Im Branson Lab

Motivation

fly behaviour are diverse and complex

To gain insight into the structure and rules governing fly behaviour.

To identify the important components for deciding fly actions.

Predicting behaviour

Pedestrian prediction for self-driving cars

Stock market forecast

Sports Analytics

Our Approach (Outline)

- 1. Simulate an artificial fly that behaves like a fly.
 - Using machine learning (ML), we build a black box model that produce fly behaviours without explicit rules, instead by pattern recognition and inference from the data
- 2. Interpret and understand the behaviour of artificial fly
 - Do controlled experiments: psychophysics studies and look into how black box model functions

Quantifying behaviour

Approximate ...

what fly is doing

what fly is seeing

its relative position to the chamber

Predicting the next movement

Output t+1

State t-1 : Learned representation of past

Predicting the next movement

Position t+1

Predicts 8 motion features:

- Forward velocity
- Side velocity
- angular velocity
- Left & right wing length
- Left & right wing angle
- Body length

Model Architectures

Xt - Output Xt - Input Ut, Lt - Intermediate layers

Model Architectures

LINEAR RNN **CNN** Yt Yt \mathbf{Y}_{t} Ut Ut X~t Lt Lt X~t X~t

> Model with memory: Recurrent neural network

Simple model: Linear Regression

Convolutional neural network

Feedforward model:

Artificial fly is an agent

Virtual fly bowl

Artificial male & female fly

Social interaction system

The behaviours that we consider to differentiate between real versus simulated flies:

- Movement patterns
- Avoiding obstacles
- Exploring the edge of the arena
- Social interactions

Simulations

RNN

Simulations

Videos

Real Data

CNN

LINEAR

Artificial Fly Evaluation

Goal: Simulated fly to use mechanisms that real fly is using. How to measure how true this is?

Artificial Fly Evaluation

Self-driving car

Performance Metrics: Is it hitting the pedestrians? Fruit fly

What metric is meaningful for predicting behaviour?

Artificial Fly Evaluation

What type of difference matters more?

Ground Truth

Output 1

Output 2

Evaluation : Distribution Distance

Velocity 0.03 Welocity 0.03 0.02 0.02 0.01 0.01 0.00 0 5 10 15 mm/s

Closest distance between flies

Evaluation : Distribution Distance

Velocity

Closest distance between flies

Evaluation : Distribution Distance

Closest distance between flies

Evaluation : Real / Fake Discrimination

Discriminative Network Distinguish whether the trajectories are real or fake

Simulated Trajectory

Evaluation : Real / Fake Discrimination

Male

Female

Our Approach (Outline)

- 1. Simulate an artificial fly that behaves like a fly.
- 2. Interpret and understand the behaviour of artificial fly

Predicted trajectories of next 3 seconds

Is position

1 to 2s position

2 to 3s position

Histogram over fly trajectories of next 3 seconds

Fly simulation movie

ls position

Last 50 frames of forward velocity data

Contributed forward motions among last 50 motions data

Movie of fly simulation with contributed forward motions

77.91ppm

Movie of fly simulation with contributed forward motions

Behaviour Analysis: Searching for hypothesis

Apply the analysis to different situations
 Look for interesting scenarios
 Narrow down the set of hypothesis

- Observed that simulated flies behave like real flies
- Learned that RNN produces behaviours that are closer to real flies based on our metrics
- Introduced visualization tools that help analyze artificial fly predictions

Future work

- Analyze internal representations of artificial fly to understand the key components
- Apply on different genotypes of flies to look for difference in behaviours

Acknowledgements

Roian Egnor

Sam

Kwak

Mayank

Kabra

Rutuja Patil

Kristin Branson

Allen Lee

Elizabeth Gillette

Heejun Choi

Paola Correa

Robert Lines

CVML **Scientific Computing** Eyrun Eyjolfdottir **Nakul Verma Rinat Mohar Natalie Falco Monet Weldon** Najla Masoodpanah **Andrew Evans**

Predicted trajectories of next 3 seconds

< 1s position
1 to 2s position
2 to 3s position

Ref Tie back to real goals.

Identify prediction change dramatically

listogram over fly trajectories of next 3 seconds

ls position

1 to 2s position

2 to 3s position

Still frame of lines and then heatmap

Now we show movies of next 3 seconds

haviour Analysis: Look at edictions into the future

Fly simulation movie

Behaviour Analysis: input contribution analysis

Vision features - approximation of what fly sees (pink)

Behaviour Analysis: input contribution analysis

Last 50 frames of vision features (pink)

Behaviour Analysis: input contribution analysis

Contributed visions among last 50 vision features

