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OBJECTIVES
LV (S, t) = 0 is the famous Black-Scholes (or Black-
Scholes-Merton) PDE, where
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The final condition and boundary conditions are

V (S, T ) = P (S) = max(E − S, 0),
V (0, t) = E, V (S, t)→ 0 as S →∞

V and
∂V

∂S
are continuous

The objectivity is to solve following discretized lin-
ear complementary problem:

LV ≥ 0 , V − P ≥ 0 , LV · (V − P ) = 0

INTRODUCTION
An option is a financial instrument that provides
various benefits to investors and traders. An
American put option is a contract that is sold by
one party (the option writer) to another party (the
option holder). The contract has a prescribed ma-
turity date, a prescribed underlying asset, and a
prescribed strike price. The option holder has the
right, but not the obligation, to sell the underly-
ing asset to the option writer at the strike price
any time up to and including the maturity date of
the option. To solve for the fair market price for
an American put option, we must decide when
it is optimal to exercise the option. This pricing
problem can be formulated mathematically as a
free-boundary-value problem for a partial differ-
ential equation (PDE).

EXPERIMENTS

δτ δx1 δx2 δx3 I CN RS ICN II IRS

0.0004 0.15 0.075 0.0375 4.0944 4.1165 4.0980 4.1158 4.2050 4.1132
0.0004 0.12 0.060 0.0300 4.1845 4.1970 4.1915 4.2659 3.7509 4.2228
0.0004 0.075 0.0375 0.01875 3.9247 3.9861 3.9708 3.1821 2.7145 2.9424
0.0001 0.075 0.0375 0.01875 3.9035 3.9301 3.9151 4.2043 3.8704 4.1984

Table 1: Error Validation of an American put option evaluated with respect to O(δx2) by different methods

δτ δS1 δS2 δS3 Implicit-Penalty CN-Penalty

0.0017 2.5 1.25 0.625 4.5213 4.5429
0.0017 2 1 0.5 3.9739 3.9416
0.0017 1 0.5 0.25 4.1351 3.9247
0.0001 0.075 0.0375 0.01875 3.7679 3.9035

Table 2: Error Validation of an American Put Option evaluated with respect to O(δx2) by the penalty method

M N II ICN IRS Imp-Penalty CN-Penalty

10 500 0.080366 0.071208 0.070966 0.021927 0.023686
10 600 0.138788 0.095581 0.095268 0.089753 0.067151
10 1000 0.333361 0.320676 0.318319 0.041413 0.072715

Table 3: CPU time required by each method to compute the American Put Option Price

Figure 1: Error rate for an European Option. Figure 1
illustrates the where the most errors comes from.

Figure 2: American Put Option Price

NUMERICAL TECHNIQUES
1. Projected Succssive Over-Relaxation:
Start with an initial guess and repeat the follow-
ing iteration until it converges:
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2. The penalty method:
The penalty method approximately satisfies the
constraints by adding a forcing term to the right
side of the PDE at the points for which the con-
straints are not satisfied. This makes the PDE
non-linear. We use a Newton iteration to solve
for the solution values at each timestep.
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3. Improved PSOR:

1. Perform Projected SOR
2. Reduce-Space
3. Repeat until free boundary converges

ERROR MEASURE

To verify the correctness of the implementation,
we evaluate the following formula to obtain an
approximation to the rate of convergence of the
method.

err1 − err2
err2 − err3

We ought to get either approximately 4 or 2 de-
pending on whether the rate of convergence is
quadratic or linear, respectively.

FINITE-DIFFERENCE METHOD
Let umn be an approximation to the "transformed"
price of the option at time tm and xn =
log(Sn/E), where Sn is the associated stock price
and E is the strike price. To solve for umn , we need
to apply a numerical method to the transformed
Black-Scholes PDE. The numerical methods that
we consider in this poster are the following finite-
difference methods.

• Explicit Finite-difference Method
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• Fully Implicit Finite-difference Method
(FIFDM)
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• Crank-Nicolson Method (CNFDM)
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• Rannacher Smoothing Method
1. Run FIFDM for the first few timesteps.
2. Then switch back to CNFDM.

where λ = δτ
δx2 .


