
University of Toronto

CSC494 Project Report

An Empirical Evaluation of the Numerical
Techiques on American Put Option

Valuation

Author:
Jiwoong Im

Supervisor:
Kenneth Jackson

September 2, 2013

1 Introduction

In finance, options get traded world-wide and the popularity of options has been surging in demand
since it has been introduced. The option is a financial instrument that leverages various of beneficial
aspects to investors and traders. By possessing options, one has less risks than just holding equities,
and perhaps, one maybe able to come up with various tactical alternatives. Indeed, trading options have
higher chances of making revenues, and it can also be cost efficiency, which one can buy the stocks at a
cheaper price by exercising the call option. Thus, profound understanding of options and sophisticated
evaluation of options are almost compulsory.

The put option is a contract that is sold by one party (the option writer) to another party (the option
holder). The contract has a prescribed maturity date, a prescribed underlying asset, and a prescribed
strike price. The option holder has the right, but not the obligation, to sell the underlying asset to the
option writer at the strike price during the certain period of its life time. The simplest option is an
European put option, which the option can be only exercised at its maturity date. The American option
is one style of the options that takes up a large portion of the option exchanges, and this particular option
can be exercised any time up to and including the maturity date of the option.

Pricing an option using the explicit form or solving analytically is ideal. For example, the Euro-
pean option price can be solved using the Black-Scholes partial differential equation (PDE). However,
unfortunately, most of the options must be evaluated by appling numerical techniques. Such problem
of determining the fair market price of an American put option can be formulated mathematically as
a free-boundary-value problem for a partial differential equation (PDE), and this problem can only be
solved by numerical methods.

Another standard example of a free-boundary-value problem for a PDE is the melting ice problem.
Given ice in water, we can determine the ice and water temperatures by solving the heat equation (diffusion
equation). However, as the ice melts, the boundary between the ice and the water changes. Determining
this free boundary is a key part in solving this problem. Similarly, to solve for the fair market price for
an American put option, we must decide when is the optimal time to exercise the option. For example,
the option holder might exercise the option to sell the stock at time t1, but what if the price of the
stock decreases further after time t1? Therefore, the problem of determining the fair market price of an
American put option includes determining the optimal time to exercise the option.

The PDE with free boundary problem can be formulated to a continuous linear complementary problem
(LCP). This re-formulated problem can be discretized, and discretized LCP is commonly solved by pro-
jected successive over-relaxation (PSOR), and improved version of PSOR. The details of LCP is described
in section 6. In our experiment, we tried to analyze two methods, and also tried to compare improved
version of PSOR against the penalty method, which is another technique for pricing the American put
option. The detail about the penalty method is described in section 7.

In our project, we assessed numerical techniques for the European option valutation problem and
American option valuation problem. We employed finite-difference methods (FDM) to obtain numeri-
cal solutions to PDEs and LCPs, and most of numerical techniques that we examined require iterative
approaches. We first tackled by assessing the performance on the European option valuation, and then
evaluated the performance on the American option valuation. Numerical methods that we went over were
explicit FD, fully implicit FD, Crank-Nicolson, and Rannacher-Smoothing. For pricing an European op-
tion, we extensively looked at LU factorization and succesive over-relaxation (SOR), and for the American
option, we examined projected-SOR, the penalty method, and improved version of the projected SOR.

1

2 European Option Valuation

2.1 Constructing Black-Scholes Formula

Let V (S, t) be the price of the option, where S is the current stock price and t is the current time.
Note that t ≤ T , where T is the maturity date. Also, let E be the strike price and P (S) = max(E−S, 0)
be the payoff value when the option is exercised.

Let Π be a portfolio, such that Π = V −ηS. Then we have a portfolio consisting of a single option and
n number of the underlying asset. Then value of the porfolio for one time step will be dΠ = dV − ηdS.
The return of stock price can be constructed using stochastic differential equation (SDE),

dS

S
= σdX + µdt,

where σdX is the Wiener process, and µdt is the drift for a single time step. Substituting SDE into
dΠ = dV − ηdS and applying Ito’s Lemma to dV term gives

dΠ = σS(
∂V

∂S
− η)dX + (µS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
+
∂V

∂t
− µηS)dt

Setting η = ∂V
∂S , it cancels out the undeterministic part of the equation, and only the determinstic

part of the equation is left.

dΠ = (
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
)dt

Assuming that the transaction cost is free, one can expect the return of the portfolio can grow at rΠdt
in a time dt. Then substituting rΠdt for dΠ, we get

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

which is Black Scholes partial differential equation 1 . Notice that if rΠdt is less than dΠ, then we have
an arbitrage, since we can borrow more money from the bank and invest more in the portfolio. If rΠdt
is greater, then we are short in porfolio, so it will be a loss for the investor. Hence, the Black Scholes
equation must be equal to zero a the European option.

2.2 European Put Option Problem

The European option is an option that can be exercised only at the end of its maturity date. The
payoff for the put option in the end of the maturity date will return (E−S)+. This means that the price
of the option at maturity date has to be equal to the payoff value. Moreover, as time gets near the expiry
date, the price of option should converge to the payoff value. For the option valuation, we will assume
that arbitrage does not exist, which means there is no opportunity to make free profit. Formulating all
constraints above, we get

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

V (S, T) = max(E − S, 0),

V (0, t) = 0

V (S, t) = S, as S →∞
1Scholes and Merton won the Nobel Prize in 1997 for developing their option pricing methodology based on this PDE.

Unfortunately, Black died before 1997 and so could not share in the Nobel Prize.

2

The first equation is the PDE, the second constraint is the final condtion, and last two constraints
are boundary conditions. This problem can be simplified to a diffusion equation by transforming V space
into u space.

S = Eex, t = T − τ/1

2
σ2, V = Eeαx+βτu(x, τ), α =

−1

2
(k − 1), β =

−1

4
(k + 1)2, k =

2r

σ2

After applying change of variables and substitutions, the problem transforms to

∂u

∂τ
+
∂2u

∂x2
= 0,

u(x, 0) = max(e
1
2 (k−1)x − e 1

2 (k+1)x, 0)

u(0, τ) = 0

u(x, τ) = x, as x→∞

Notice that ∂u
∂τ + ∂2u

∂x2 is an operator associated with the well known heat equation. Moreover, t was
moving forward in time until T , but τ is moving backword in time. This transform the final condition
problem into the initial condition problem. Then the transformed formulation is

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(s)e−(x−s)
2/4τds,

which is a solution to the diffusion equations. And then, the closed form equation is obtained:

P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1)

N(d1) =
1√
2π

∫ d1

−∞
e−

1
2 s

2

ds

N(d) +N(−d) = 1

3

3 Finite-Difference Methods to the Option Valuation Problem

Finite-difference methods are commonly used to obtain numerical approximations to option valuation
problems. Let L be the differential operator, such that

L =
∂

∂τ
+

∂2

∂x2
.

A finite-difference method approximates u on a finite grid, {(n,m) ∈ [−N,N]× [0,M]}, where 2N + 1
is the total number of points along the x-dimension and M + 1 is the total number of points along the
τ -dimension. Thus, −δxN ≤ x ≤ δxN and 0 ≤ τ ≤ δτM . Observe that x is bounded in this problem,
even though stock price, S, is in [0,∞). The truncation of domain along x was necessary, because we need
to specify the finite domain to create the finite grid. This illustrates that choosing the upper bound and
the lower bound of x can affect the accuracy. Typically the maximum is chosen between 3 to 5, which is
approximately 271 dollars given a strike price of hundred dollars. In an ordinary case, this is more than
enough to be our upper bound.

For the value of u(x, τ) at the mesh point, u(nδx,mδτ) ≈ umn . Additionally, the initial condition and
boundary conditions are represented as

u(x, 0) = u(nδx, 0) = u0n , n ∈ N , −N ≤ n ≤ N
u(xmin, τ) = u(−Nδx, τ) = um−N , m ∈ N , 0 ≤ m ≤M
u(xmax, τ) = u(Nδx, τ) = umN , m ∈ N , 0 ≤ m ≤M

Now, we have (2N − 1)M many umn unknowns. In order to solve unknowns, umn , we need to either
solve it directly from some explicit formula or by constructing a linear system. There are several methods
that can be applied to finite-difference approximations.

3.1 Explicit Finite-difference Method

The explicit finite-difference method uses the forward difference approximation for ∂u
∂τ and the central

difference approimation for ∂2u
∂x2 to compute umn for all n and m. Using the forward difference with respect

to the time implies that it computes umn explicitly given u with previous time, m− 1, for all n. Applying
a Taylor expansion on each term in the diffusion equation, Lu, we get

∂u

∂τ
=
u(x, τ + δτ)− u(x, τ)

δτ
+O(δτ)

∂2u

∂x2
=
u(x, τ + δτ)− 2u(x, τ) + u(x, τ − δτ)

(δx)2
+O((δx)2)

After restricting our domain to the finite grid, the approximation can be represented as

umn − um−1n

δτ
+O(δτ) =

um−1n+1 − 2um−1n + um−1n−1
δx2

+O((δx)2)

We drop the O(·) truncation error terms and rearrange the equation above

λumn−1 − (1 + 2λ)umn + λumn+1 = um+1
n (∗)

where λ = δτ
δx2 . Starting from m = 0 and until m = M , we can calculate um+1

n for all n, since we know umn .

The major disadvantage of the explicit finite difference method is that it suffers from the stability
problem. The choice of δτ and δx, directly affect the accuracy of solution. Depending on the ratio,

4

λ = δτ
(δx)2 , we may face the computational precision problem while executing the method. The error

arises on arthimetic precision, where rounding errors from the equation (∗) get magnified at each iter-
ation. The method is only stable if 0 < λ ≤ 1

2 and unstable if 1
2 < λ. The proof is shown on appendix A.1.

However, as we want to discretize finer along x and still maintain the accuracy, we must make the grid
coarser along τ . For example, suppose λ is within a stable range and we decide to break the grid twice
more along x, then the step size in time must be quartered in order to maintain the accuracy.

3.2 Fully Implicit Finite-difference Method

The fully implicit finite-difference method uses the backward difference approximation for ∂u
∂τ and the

central difference approximation for ∂2u
∂x2 to compute umn for all n and m. The derivation of the implicit

method is very similar to the explicit finite-difference method, but has intrinsically different properties
and makes a big difference on stability.

∂u

∂τ
=
u(x, τ)− u(x, τ − δτ)

δτ
+O(δτ)

∂2u

∂x2
=
u(x, τ + δτ)− 2u(x, τ) + u(x, τ − δτ)

(δx)2
+O((δx)2)

Similarly, restricting our domain to the finite grid, we get

um+1
n − umn

δτ
+O(δτ) =

um+1
n+1 − 2um+1

n + um+1
n−1

(δτ)2
+O(δx2)

After dropping O(·) and the rearrangement, the equation becomes

−λum+1
n−1 + (1 + 2λ)um+1

n − λum+1
n+1 = umn

In the implicit method, we are solving for um+1
n for all n given umn . In contrast to the explicit method,

we are implicitly solving u. Observe that we have a linear system, since there are (2N−1)M many similar
equations above and (2N − 1)M many unknowns. We can write the linear system as

Mum+1 = bm

Indeed, the matrix M turned out to be the symmetric tridiagonal matrix. This is because we are only
using three-point stencil, where only um+1

n , um+1
n+1 , and um+1

n−1 depend on umn . Moreover bm is umn plus

boundary cases, where λum+1
−N and λum+1

N . Therefore, the linear system appears to be

1 + 2λ −λ 0 · · · 0
−λ 1 + 2λ −λ 0

0 −λ
. . .

. . . 0
...

. . .
. . . −λ

0 0 −λ 1 + 2λ




um1
um2
...
um9
um10

 =


bm1
bm2
...
bm9
bm10


where bm = um + λ(um+1

−N , 0, 0, . . . , um+1
N)T

Although, the explicit finite-difference method might have an advantage on the runtime efficiency over
the implicit method, the difference is very small. Indeed, with a small time step, implicit methods are
slightly faster than the explicit finite-difference method. One general advantage of the implicit finite-
difference method over the explicit finite-difference method is that it does not suffer from the stability
problem. This illustrates that there is no constraint of λ being between (0, 12]. Therefore, in contrast to
the explicit method, it can maintain a finer grid along x without having coarse grid along τ .

5

3.3 Crank-Nicolson Method

Crank-Nicolson method is preferable to the explicit or implicit finite-difference method, because it
takes advantage of the forward and backward difference by averaging the two methods for ∂u

δτ . The

central difference approximation is still used for ∂2u
δx2 .

forward difference:
um+1
n − umn

δτ
+O(δτ) =

umn+1 − 2umn + umn−1
(δx)2

+O((δx)2)

backward difference:
um+1
n − umn

δτ
+O(δτ) =

um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2
+O((δx)2)

average of two eq’ns:
um+1
n − umn

δτ
+O(δτ2) =

1

2
(
um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2
+
umn+1 − 2umn + umn−1

(δx)2
) +O((δx)2)

Rearranging the equation above we get,

Zmn = (1− λ)umn +
λ

2
(umn−1 + umn+1)

(1 + λ)um+1
n − λ

2
(um+1
n−1 + um+1

n+1) = Zmn (∗)

Since it adopts the implicit method, it also needs to solve the system of linear equations,

Cum+1 = bm

Even though the method uses a six-point stencil, the matrix C still has the symmetric tridiagonal
property. This is because, only three nodes are accounted for constructing the matrix, and the rest of
three nodes are accumulated for bm. bm is Zm plus boundary cases, where 1

2λ(um+1
−N , 0, · · · , 0, um+1

N)T is
brought to the right hand side of equation (∗). Thus, the linear system is

1 + λ −λ2 0 · · · 0
−λ2 1 + λ −λ2 0

0 −λ2
. . .

. . . 0
...

. . .
. . . −λ2

0 0 −λ2 1 + λ




um1
um2
...
um9
um10

 =


bm1
bm2
...
bm9
bm10


where bm = Zm + λ

2 (um+1
−N , 0, 0, . . . , um+1

N)T

The explicit finite-difference method and fully implicit finite-difference method have O(δτ)+O((δx)2).
The main benefit that we gain from Crank-Nicolson is the accuracy. The Crank-Nicolson method has an
accuracy of O((δτ)2) + O((δx)2). The proof is shown in Appendix A.2. Moreover, the Crank-Nicolson
method satifies the stability and convergence for all λ > 0.

3.4 Rannacher Smoothing Method

One of the problem that arises in practice when using the Crank-Nicolson method is that you do
not exactly get O(δx2) +O(δτ2). This is because Crank-Nicolson method try to approximate the payoff
function using Talyor expansion, that is not a smooth curve. But, noticing that the implicit finite-
difference method is actually better at converging closer to the payoff function than Crank-Nicolson
finite-difference method. Rannacher Smoothing method uses the advantage of both, the implicit and the
Crank-Nicolson method, by running the implicit method for first few iterations, then switch back to the
Crank-Nicolson method. This estimates much better than just using Crank-Nicolson in practice, and also
achieves O(δx2) +O(δτ2)

6

4 Solving Linear System

For solving system of linear equations from section 3, we attempted solving them by using LU factor-
ization and Successive over-Relaxation (SOR) method.

4.1 LU factorization

In linear algebra, LU factorization is used to decompose a matrix into a lower triangular matrix and
an upper triangular matrix,

M = LU

Let the linear system be Mx = LUx = b. Then the linear system can be solved in two steps.

1. Let y = Ux and solve for Ly = b.
2. Solve y = Ux.

Fortunately, the matrices that we deal with are all symmetric and tridiagonal matrices. Following by
this property, a lower triangular matrix, L, and an upper triangular matrix, U, are also tridiagonal if
matrix, M, is tridiagonal matrix. Suppose that M is n x n matrix is

a11 a12 0 · · · 0
a21 a22 a23 0

0 a32
. . .

. . . 0
...

. . .
. . . an−1n

0 0 ann−1 ann

 =



1 0 0 · · · 0
l21 1 0 0

0 l32
. . .

. . . 0
...

. . .
. . . 0

0 · · · 0 lnn−1 1





u11 a12 0 · · · 0
0 u22 a23 0

0 0
. . .

. . . 0
...

. . . un−1n−1 an−1n
0 · · · 0 0 unn


Then, each term in the lower triangular and upper triangular matrices can be determined, and we can
observe that they are tridiagonal as well:

u11 = a11

uii = aii − li,i−1ai−1,i , ∀i = 2, · · · , n

lii−1 =
ai−1,i
ui−1,i−1

This allow us to solve the linear system very efficiently, because solving in two steps described above are
single operations each.

yi = bi + lii−1yi−1 , ∀i = 2, · · · , n

xi =
yi + uiixi−1

aii+1
, ∀i = 1, · · · , n− 1

Here is the LU matrix for the fully-implicit method:

1 + 2λ −λ 0 · · · 0
−λ 1 + 2λ −λ 0

0 −λ
. . .

. . . 0
...

. . .
. . . −λ

0 0 −λ 1 + 2λ



=



1 0 0 · · · 0
−λ

y−N+1
1 0 0

0 −λ
y−N+2

. . .
. . . 0

...
. . .

. . . 0
0 · · · 0 −λ

yN−2
1





y−N+1 −λ 0 · · · 0
0 y−N+2 −λ 0

0 0
. . .

. . . 0
...

. . . yN−2 −λ
0 · · · 0 0 yN−1


7

such that

y−N+1 = 1 + 2λ

yn = 1 + 2λ− λ2

yn−1

Here is the LU matrix for the Crank-Nicolson method:

1 + λ −λ2 0 · · · 0
−λ2 1 + λ −λ2 0

0 −λ2
. . .

. . . 0
...

. . .
. . . −λ2

0 0 −λ2 1 + λ



=



1 0 0 · · · 0
−λ

y−N+1
1 0 0

0 −λ
y−N+2

. . .
. . . 0

...
. . .

. . . 0
0 · · · 0 −λ

yN−2
1





y−N+1
−λ
2 0 · · · 0

0 y−N+2
−λ
2 0

0 0
. . .

. . . 0
...

. . . yN−2
−λ
2

0 · · · 0 0 yN−1


such that

y−N+1 = 1 + λ

yn = 1 + λ− λ2

4yn−1

4.2 Successive Over-Relaxation

Alternatively, the SOR method is an iterative method, which starts with an initial guess and improves
the solution until it converges to the exact solution. Its advantage over direct calculation is that there
is an elegant way for this method to adapt to the American put option pricing problem. The backward
difference equation can be rearranged and written as

um+1
n =

1

1 + 2λ
(bmn + λ(um+1

n−1 + um+1
n+1)),

which is for the fully implicit method. The average of the backward and forward difference equations can
be rearranged and written as

um+1
n =

1

1 + λ
(bmn +

λ

2
(um+1
n−1 + um+1

n+1)),

which is for the Crank-Nicolson method. The procedure goes by first making an initial guess of the
solution, um+1,0

n , we then iteratively calculate um+1,k+1
n for all n until um+1,k+1

n converges to um+1
n by

repeating process below:

Fully Implicit FDM: ym+1,k+1
n =

1

1 + 2λ
(bmn + λ(um+1,k+1

n−1 + um+1,k
n+1)), −N < n < N

Crank-Nicolson FDM: ym+1,k+1
n =

1

1 + λ
(bmn +

λ

2
(um+1,k+1
n−1 + um+1,k

n+1)), −N < n < N

um+1,k+1
n = um+1,k

n + ω(ym+1,k+1
n − um+1,k

n)

||um+1,k+1 − um+1,k||2 < ε

8

where ε is the tolerance and ω is parameter typically between 0 to 2. When 0 < ω < 1, then the method
is called succesive under-relaxation, and when 1 < ω < 2, then the method is called successive over-
relaxation.

The reason why this is called a successive over-relaxation is because we have a hyper parameter, ω,
that controls how much change we want to make from the previous iteration step to the next. Most of
times, we make changes more than how much we need to. Furthermore, the method is gauranteed to be
converge, because %(G) < 1 where G is iteration matrix of SOR and % is spectral radius.

9

5 European Put Option Valuation Experiments

Figure 1: European Option Price Calculated by Explicit FDM over time

Three different finite-difference method techniques were explored to solve the European put option
pricing problem; explicit, fully-implicit, and Crank-Nicolson methods. The implementation and perfor-
mance experiment was done by evaluating each method with an exact put option price as a benchmark.
The exact put option price was calculated by using the Black-Scholes formula.

Figure 2: European Option Price Calculated by Explicit FDM at time t = 0

For the experiment, set the interest rate, r = 0.05, option exercise price, K = 10, volatility, σ = 0.2,
and maturity of the option T to be 0.5 yr. several trials were performed by fixing the size of grid respect
to τ and changing the size of the grid with respect to x, and visa versa.

10

Here is the chart for price of European put option evaluated by different methods at t = 0. The
parameters for the chart below is M = 100, N = 25, δτ = 0.1, δx = 0.0004, λ = 0.04, x is bounded by
±3 :

Price Exact (BS) Explicit Implicit-LU Implicit-SOR CN-LU CN-SOR
0.4979 9.0144 9.0139 9.0139 9.0139 9.0139 9.0139
0.5613 8.9509 8.9506 8.9530 8.9505 8.9506 8.9506
0.6329 8.8794 8.8792 8.8844 8.8790 8.8792 8.8792
0.7136 8.7987 8.7986 8.8014 8.7983 8.7986 8.7986
0.8046 8.7077 8.7076 8.7090 8.7073 8.7076 8.7076
0.9072 8.6051 8.6050 8.6056 8.6047 8.6050 8.6050
1.0228 8.4895 8.4894 8.4896 8.4890 8.4894 8.4894
1.1533 8.3590 8.3590 8.3590 8.3586 8.3590 8.3589
1.3003 8.2120 8.2119 8.2119 8.2116 8.2119 8.2119
1.4661 8.0462 8.0461 8.0461 8.0458 8.0461 8.0461
1.6530 7.8593 7.8592 7.8592 7.8588 7.8592 7.8592
1.8637 7.6486 7.6484 7.6484 7.6481 7.6484 7.6484
2.1014 7.4109 7.4108 7.4107 7.4104 7.4108 7.4108
2.3693 7.1430 7.1429 7.1428 7.1425 7.1428 7.1428
2.6714 6.8409 6.8408 6.8407 6.8404 6.8407 6.8407
3.0119 6.5004 6.5002 6.5001 6.4999 6.5002 6.5001
3.3960 6.1164 6.1162 6.1162 6.1160 6.1162 6.1162
3.8289 5.6837 5.6836 5.6837 5.6834 5.6836 5.6836
4.3171 5.1966 5.1969 5.1971 5.1969 5.1970 5.1970
4.8675 4.6505 4.6513 4.6519 4.6517 4.6516 4.6516
5.4881 4.0441 4.0453 4.0464 4.0462 4.0458 4.0458
6.1878 3.3847 3.3849 3.3865 3.3864 3.3857 3.3857
6.9768 2.6939 2.6901 2.6916 2.6915 2.6908 2.6908
7.8663 2.0106 1.9995 1.9998 1.9997 1.9997 1.9997
8.8692 1.3864 1.3673 1.3658 1.3657 1.3665 1.3665
10.0000 0.8703 0.8473 0.8446 0.8445 0.8459 0.8459
11.2750 0.4906 0.4703 0.4681 0.4681 0.4692 0.4692
12.7125 0.2453 0.2324 0.2317 0.2317 0.2321 0.2321
14.3333 0.1077 0.1021 0.1025 0.1025 0.1023 0.1023
16.1607 0.0412 0.0399 0.0407 0.0407 0.0403 0.0403
18.2212 0.0136 0.0139 0.0146 0.0146 0.0143 0.0143
20.5443 0.0039 0.0044 0.0048 0.0048 0.0046 0.0046
23.1637 0.0009 0.0012 0.0014 0.0014 0.0013 0.0013
26.1170 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004
29.4468 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001
33.2012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: Price of European Put Option evaluated by different methods at t = 0

From the Table 1, we can observe that most of methods produce reasonably accurate values compared
to exact values that were computed by solving the Black-Scholes equation. However, the largest errors
are generally emanate from near the stock price at 10, which is the strike price. The reason behind this is
because the payoff function is a piecewise linear function that has slanted ”L” shape. Therefore, the payoff
function is not smooth, nor is the derivative at the strike price. And yet, the finite-difference methods use
the Taylor series to approximate the payoff function, and requires the function to be analytic or smooth
unto a certain degree . This causes the biggest error at the strike price. The values from Table 1, is
measured with when M = 100 and N = 40. However, as we discretize the grid to be even finer, which

11

means increasing the size of N , our finite-difference method becomes identical to the actual option curve.

Figure 3: Example of Error Rate Plotted

The hypothesis for the explicit and implicit method are that the error will change quadratically with
respect to δx and linearly respect to δτ , since the error bound is O(δx2) +O(δτ). Similarly, error bound
for the Crank-Nicolson method is O(δx2) +O(δτ2), so the error will change quadratically with respect to
δx and δτ .

Table 2 displays maximum error values of the European put option evaluated by different numerical
methods at t = 0 with all conditions maintained from above, except the error values were demonstrated
with greater variety of grid sizes.

Table 2 illustrates the error behaviours on option price computed by different methods. The size of M
and N were chosen from 10 to 700. For the purpose of asserting O(δx2) +O(δτ) and O(δx2) +O(δτ2) of
each method, consider observing a case when δτ is relatively small compare to δx, and vice versa. This
way the influence of δτ on the error would not have as much effect.

Figure 4 demonstrates the error rate when M = 100 and N between 20 to 40. According to the graph,
all methods have a linear growth in error rates as δx2 grow linearly. Moreover, Figure 5 demonstrates the
error rate when N = 700 and M = 10 to 40. The graph indicates that error rates for the implicit method
and Crank-Nicolson method grows linearly, and Rannacher-Smoothing grows quadratically. These results
illustrate that the errors follow our hypothesis.

12

M N λ δτ δx2 Explicit Implicit-LU Implicit-SOR CN-LU CN-SOR RS
10 25 0.27 0.004 0.0144 0.0110 0.0380 0.0380 0.0241 0.0241 0.0279
10 30 0.40 0.004 0.01 0.0038 0.0298 0.0298 0.0164 0.0164 0.0201
10 35 0.54 0.004 0.00734 0.1367 0.0251 0.0251 0.0119 0.0119 0.0155
10 40 0.71 0.004 0.00562 11.7710 0.0220 0.0220 0.0090 0.0090 0.0126

100 20 0.01 0.0004 0.0225 0.0378 0.0407 0.0407 0.0393 0.0393 0.0393
100 25 0.02 0.0004 0.0144 0.0231 0.0258 0.0258 0.0244 0.0244 0.0245
100 30 0.04 0.0004 0.01 0.0154 0.0181 0.0181 0.0167 0.0167 0.0168
100 35 0.05 0.0004 0.00734 0.0109 0.0135 0.0135 0.0122 0.0122 0.0123
100 40 0.07 0.0004 0.00562 0.0080 0.0106 0.0106 0.0093 0.0093 0.0093

10 200 4.44 0.004 0.0009 ∞ 0.0157 0.0157 0.0087 0.0087 0.0049
20 200 2.22 0.002 0.0009 ∞ 0.0084 0.0084 0.0011 0.0011 0.0021
30 200 1.48 0.0013 0.0009 ∞ 0.0060 0.0060 0.0011 0.0011 0.0016
40 200 1.11 0.001 0.0009 ∞ 0.0048 0.0048 0.0011 0.0011 0.0014

10 700 54.4 0.004 0.000073 ∞ 0.0146 0.0146 0.0290 0.0290 0.0039
20 700 27.2 0.002 0.000073 ∞ 0.0074 0.0074 0.0104 0.0104 0.0011
30 700 18.1 0.0013 0.000073 ∞ 0.0049 0.0050 0.0039 0.0039 0.0006
40 700 13.6 0.001 0.000073 ∞ 0.0037 0.0038 0.0014 0.0014 0.0004

Table 2: Maximum Error Values of a European Put Option evaluated by different methods at t = 0

Figure 4: Error Rate from Explicit Method on fixed M = 100 and N from 20 to 40

13

Figure 5: Error Rate from Explicit Method on fixed N = 700 and M from 10 to 40

6 American Option Valuation

The European Option Valuation only allowed exercising at its maturity date. However, because the
American Option concedes exericising any time before or at its matuirty date, we have extra constraints
while solving the PDE. More precisely, determining this free boundary, x = xf (t), is a key part in solving
this problem, which is the border line between the exercising is an optimality or not. Similarly, to solve
for the fair market price for an American put option, we must decide when is the optimal time to exercise
the option.

6.1 Linear Complementary Problem

Let V (S, t) be the price of the option, where S is the current stock price and t is the current time.
Note t ≤ T , where T is the maturity date. Also, let E be the strike price and P (S) = max(E − S, 0) be
the payoff value when the option is exercised.

Next, let Sf (t) be the yet to be determined position of the free-boundary at time t. It can be shown
that, for S ≤ Sf (t) the option is exercised and V (S, t) = P (S). On the other hand, for S > Sf (t), the
option is held and its value is determined as described below.

Furthermore, let L be the linear differential operator given by

LV (S, t) =
∂V (S, t)

∂t
+

1

2
σ2S2 ∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t)

LV (S, t) = 0 is the famous Black-Scholes (or Black-Scholes-Merton) PDE. Finally, let the terminal
condition and boundary conditions be

V (S, T) = P (S) = max(E − S, 0),

V (0, t) = E, V (S, t)→ 0 as S →∞

V and
∂V

∂S
are continuous

As noted above, we exercise the option if the stock price, S, satisfies 0 ≤ S ≤ Sf (t). In this case, it
can be shown that

V = E − S ≥ 0, LV > 0

14

and, when early exercising is not optimal (i.e., Sf (t) < S <∞), it can be shown that

V > E − S, LV = 0

where S is the current asset value, t is the current time, V is the price of the American put option, and
E is the strike price. Thus, we see that the problem takes the form of a continuous linear complimentary
problem:

LV ≥ 0 ,

V − P ≥ 0

LV · (V − P) = 0

where the last equation above is a short way of saying that, for every S and t, either LV (S, t) = 0 or
V (S, t)− P (S) = 0.

A major advantage of the linear complimentary formulation of the problem is that we do not need to
determine the free boundary Sf (t) explicitly. Once we solve the linear complimentary problem, the free
boundary, Sf (t), can be determined as the largest value of S for which V (S, t)− P (S) = 0.

To make the problem simpler to solve, we can transform V space to u space by changing variables
from (S, t) to (x, τ):

S = Eex, t = T − τ/1

2
σ2, V = Eeαx+βτu(x, τ), α =

−1

2
(k − 1), β =

−1

4
(k + 1)2, k =

2r

σ2

Having made this change of variables, the differential operator L becomes

Lu(x, τ) =
∂u(x, τ)

∂τ
− ∂2u(x, τ)

∂x2

This is the operator associated with the well-known heat equation.
The initial and fixed boundary conditions become

u(x, 0) = g(x, 0),

u(x, τ) is continuous,

∂u

∂x
(x, τ)is as continuous as g(x, τ),

lim
x→±∞

u(x, τ) = lim
x→±∞

g(x, τ)

where g(x, τ) is payoff function throughout the option’s lifetime.

6.2 Finite-Difference Formulation Setup

First, the payoff function, g(x, τ), and the option price function, u(x, τ) must be dicretized. Let
g(x, τ) = g(nδx,mδτ) and denote it as gmn . Also, let um be a vector that contains ui for all i = −N, · · · , N
at time m, and gm be a vector that contains gi for all i = −N, · · · , N at time m.
Then we can write V − P ≥ 0 as

um ≥ gm

Moreover, we can formulate discretized versions of two equations LV and V − P in a matrix form.
Let M be the matrix that represents the left side of the linear system, and bm be the right hand side of
the linear system. Then our linear complimentary problem becomes

Mum+1 ≥ bm,

um+1 ≥ gm,

(um+1 − gm+1) · (Mum+1 − bm) = 0

15

in terms of the matrix form.

Since the equality in the heat equation is converted to inequality, we can do the same for the implicit
and the Crank-Nicolson method.

Implicit: (1 + 2λ)um+1
n − λ(um+1

n−1 + um+1
n+1) ≥ umn

Crank-Nicolson: Zmn = (1− λ)umn +
λ

2
(umn−1 + umn+1)

(1 + λ)um+1
n − λ

2
(um+1
n−1 + um+1

n+1) ≥ Zmn

The bm and M remains the same as the european option valuation case for the implicit and for the
Crank-Nicolson method. For the implicit finite-difference method:

bm =


um−N+1

um−N+2
...

umN−2
umN−1

 +


gm+1
−N
0
...
0

gm+1
N

 , and M =



1 + 2λ −λ 0 · · · 0
−λ 1 + 2λ −λ 0

0 −λ
. . .

. . . 0
...

. . .
. . . −λ

0 0 −λ 1 + 2λ



For the Crank-Nicolson finite-difference method:

bm =


Zm−N+1

Zm−N+2
...

ZmN−2
ZmN−1

 +


gm+1
−N
0
...
0

gm+1
N

 , and C =



1 + λ −λ2 0 · · · 0
−λ2 1 + λ −λ2 0

0 −λ2
. . .

. . . 0
...

. . .
. . . −λ2

0 0 −λ2 1 + λ



16

7 Iterative Methods for the American Option Valuation

The notation and the grid setup from the European option valuation problem will be used again in
the American option valuation problem. Some methods for the American option valuation builds up from
solving the European option valuation.

7.1 The Projected Successive Over-Relaxation

The projected successive over-relaxation (PSOR) extended from SOR method. The SOR method is
an iterative method, which also starts by an initial guess and improves the solution until it converges to
the exact solution.

Fully Implicit FDM: ym+1,k+1
n =

1

1 + 2λ
(bmn + λ(um+1,k+1

n−1 + um+1,k
n+1)), −N < n < N

Crank-Nicolson FDM: ym+1,k+1
n =

1

1 + λ
(bmn +

λ

2
(um+1,k+1
n−1 + um+1,k

n+1)), −N < n < N

um+1,k+1
n = um+1,k

n + ω(ym+1,k+1
n − um+1,k

n)

||um+1,k+1 − um+1,k||2 < ε

For the American option, we know that V must be greater than or equal to P , umn ≥ gmn . Then, at
the end of each iteration, we can take

max(um+1,k + ω(ym+1,k+1 − um+1,k),gm)

We can observe that this does not violate our linear complimentary constraints.
Case1:

If um+1,k + ω(ym+1,k+1 − um+1,k) ≤ gm,

then um+1,k+1 = gm and Mum+1,k+1 > bm

As consequence, we get

(um+1,k+1 − gm+1) · (Mum+1,k+1 − bm) = 0

The reason for the inequality on the linear system is because, um+1,k+1 = gm implies that it is optimal
to exericse the option at time, m+ 1.
Case2:

If um+1,k + ω(ym+1,k+1 − um+1,k) > gm,

then Mum+1,k+1 = bm

This is because, um+1,k+1 > gm implies that exercising is not the optimal choice. Hence, it satisfies
the Black-Scholes formula. Therefore, we still maintain

(um+1,k+1 − gm+1) · (Mum+1,k+1 − bm) = 0

The fact that M being the symmetric positive definite matrix guarantees that Mum+1 ≥ bm. Fur-
thermore, the optimal relaxation parameter, ω, can be determined when M is the symmetric positive
definite matrix.

7.2 Penalty Method

The penalty method is quite different from the PSOR method, where PSOR explicitly tries to satisfy
the LCP constraints on each iteration step of the method, the penalty method implicitly pleases the
constraints by constantly penalizing the PDE if constraints are not satisfied. The penalty method uses

17

the non-smoothing Newton iteration, which is a simple application of Newton’s equation for solving the
equations.

In the penalty method, the penalty term, ε, is added to Lu = 0 for penalizing whenever V < P . This
ensures the early exercise constraints would be satisfied. This penalty term is prominent to the option
price curve because the option curve, V , tends to be lower than the payoff curve, P , on the left side of
strike price. This is the natural behaviour for the European price as shown in the Figure 6.

Figure 6: European Put Price Curve

Among various possible choices of penality formulas, one of the penalty term that I used is,

ε = L
V − P
δτ

where L is the penalty factor, that is chosen so that L ' O(1
tol), and tol is the convergence tolerance.

Then the penalty term for each point in the grid can be defined by:

pm+1,k
n =

{
um+1,k
n −gmn
δτ ·L , if um+1,k < gm

0, if um+1,k ≥ gm

This makes the our PDE, Lu − ε > 0 to be a non-linear PDE, and this non-linear equation is solved
by Newton’s iterations. Also, by formulating the Black-Scholes equation in following manner, we can
incorporate the explicit, implicit and Crank-Nicolson methods.

um+1
n − umn

δτ
= (1− θ)Lum+1

n + θLumn + pm+1
n

where θ is a parameter that determines the method that will be applied.

On each Newton iteration, the penalty will be enforced to the Lu until the error, err converges within
the tolerance, tol or the penality applied in m+ 1 iterations is exactly same as the the penalty applied in

18

m. The error quantity is determined by

max
m,n

max(|um+1,k+1 − um+1,k|)
max(1, |um+1,k+1|)

In practice, the penality method is very appealing because the iteration is converged within one to
three iterations.

7.3 The Improved PSOR

Last but not least, the improved PSOR is a clever technique that uses the knowledge of the estimated
free boundary value. In practice, the PSOR algorithm is not used much because it takes such a long
iterations to converge, especially for the fine grid. The idea of the improved PSOR algorithm is to run
PSOR for just a few iterations, compute the exact value of Black-Scholes formula for the right side of the
free boundary, and then re-iterate PSOR.

The early exercise is not optimal on the right side of the free boundary, xf (t) ≤ x < xmax, we can
directly compute the Black-Scholes formula along that region. However, since we only iterated PSOR a
few times, the free boundary, xf (t), might not be exactly accurate. Hence, we have to re-iterate PSOR
to find the accurate solution. Indeed, the free boundary does get approximately correct within few grid
steps. Thus, computing PSOR for the second time does not take many iterations. Moreoever, the fact
that we approximated all values on the right side of the free boundary space with the exact Black-Scholes
formula reduces a lot of computations.

Improved PSOR has three phases in its algorithm:
1. Perform Projected SOR
2. Reduce-Space
3. Re-perform Projected SOR

On the third phase, when PSOR is re-performed, it should run until the free boundary gets settled,
or the option value at the k + 1 iteration step, um+1,k+1 is the same as um+1,k. These two conditions
illustrates that the option price has been resolved.

19

8 American Option Valuation Experiments

Figure 7: American Put Price Curve

In our American option valuation experiments, we explored the PSOR method, the penalty method,
and the improved PSOR method. The implementation correctness and performance experiments were
evaluated by error comparisons and iteration step comparisons. All the comparisons were performed on
a 2.4 GHz Intel Core with 4 GB RAM, using Mac OS X.

Figure 8: American Put Price Curve

For the benchmark of experiment, we used the same condition again as the European option price,
where we set the interest rate, r = 0.1, option exercise price, K = 10, volatility, σ = 0.4, and maturity
of the option T to be 0.5 yr. We did several trials by fixing the size of the grid with respect to τ and

20

changing the size of the grid with respect to x, and vice versa.

Here is the chart for the prices of an American option evaluated by different methods at t = 0. The
parameters for the chart below are M = 100, N = 25, δτ = 0.1, δx = 0.0004, λ = 0.04, x is bounded by
±3 :

Price Implicit-PSOR CN-PSOR RS-PSOR Improved-CN-PSOR Improved-I-PSOR
0.4979 9.5021 9.5021 9.5021 9.5021 9.5021
0.5613 9.4387 9.4387 9.4387 9.4387 9.4387
0.6329 9.3671 9.3671 9.3671 9.3671 9.3671
0.7136 9.2864 9.2864 9.2864 9.2864 9.2864
0.8046 9.1954 9.1954 9.1954 9.1954 9.1954
0.9072 9.0928 9.0928 9.0928 9.0928 9.0928
1.0228 8.9772 8.9772 8.9772 8.9772 8.9772
1.1533 8.8467 8.8467 8.8467 8.8467 8.8467
1.3003 8.6997 8.6997 8.6997 8.6997 8.6997
1.4661 8.5339 8.5339 8.5339 8.5339 8.5339
1.6530 8.3470 8.3470 8.3470 8.3470 8.3470
1.8637 8.1363 8.1363 8.1363 8.1363 8.1363
2.1014 7.8986 7.8986 7.8986 7.8986 7.8986
2.3693 7.6307 7.6307 7.6307 7.6307 7.6307
2.6714 7.3286 7.3286 7.3286 7.3286 7.3286
3.0119 6.9881 6.9881 6.9881 6.9881 6.9881
3.3960 6.6040 6.6040 6.6040 6.6040 6.6040
3.8289 6.1711 6.1711 6.1711 6.1711 6.1711
4.3171 5.6829 5.6829 5.6829 5.6829 5.6829
4.8675 5.1325 5.1325 5.1325 5.1325 5.1325
5.4881 4.5119 4.5119 4.5119 4.5119 4.5119
6.1878 3.8122 3.8122 3.8122 3.8122 3.8122
6.9768 3.0232 3.0232 3.0232 3.0232 3.0232
7.8663 2.1866 2.1861 2.1865 2.1866 2.1861
8.8692 1.4655 1.4642 1.4654 1.4655 1.4642
10.0000 0.8946 0.8930 0.8945 0.8946 0.8930
11.2750 0.4913 0.4900 0.4912 0.4913 0.4900
12.7125 0.2411 0.2407 0.2411 0.2411 0.2407
14.3333 0.1057 0.1059 0.1056 0.1057 0.1059
16.1607 0.0415 0.0419 0.0415 0.0415 0.0419
18.2212 0.0146 0.0150 0.0146 0.0146 0.0150
20.5443 0.0047 0.0049 0.0047 0.0047 0.0049
23.1637 0.0014 0.0015 0.0014 0.0014 0.0015
26.1170 0.0004 0.0004 0.0004 0.0004 0.0004
29.4468 0.0001 0.0001 0.0001 0.0001 0.0001
33.2012 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Price of an American Put Option evaluated by different methods at t = 0

Evaluating the correctness of an American put option is more indirect because we do not have the
benchmark values to compare from, like we do in the European option valuation. However, we know
the error rate of each method. There is a trick that we can employ to verify the correctness of the
implementation. For each method, the error rate is either O(δτ) +O(δx2) or O(δτ2) +O(δx2) . Consider
fixing the grid along M , so that O(δτ) or O(δτ2) is small, and consider the grid along x with N =
n, n2 , and

n
4 . This way, we will get three error values per each method, err1, err2, and err3 with respect

21

to O(δxn), O(δxn/2) and O(δxn/4). Then we can evaluate the following formula to examine the error
quantity

err1 − err2
err2 − err3

(∗)

Following this manner, we ought to get either approximately 4 or 2 depending on the error rate of the
method, assuming that our implmentation is correct. The proof is on appendix A.3

δτ δx1 δx2 δx3 I CN RS I-I I-CN I-RS
0.0004 0.15 0.075 0.0375 4.0944 4.1165 4.0980 4.1158 4.2050 4.1132
0.0004 0.12 0.060 0.0300 4.1845 4.1970 4.1915 4.2659 3.7509 4.2228
0.0004 0.075 0.0375 0.01875 3.9247 3.9861 3.9708 3.1821 2.7145 2.9424
0.0001 0.075 0.0375 0.01875 3.9035 3.9301 3.9151 4.2043 3.8704 4.1984

Table 4: Error Validation of an American put option evaluated with respect to O(δx2) by different
methods at t = 0. Here are the names for each label in the Table 4: I = the implicit method, CN : the
Crank-Nicolson method, RS : the Rannacher-Smoothing method, ’I-’ refers to the improved version of
PSOR. For example, I-I refers to the improved version of PSOR method

The results of computing error checking equation (∗) is shown in the Table 4 and Table 5. We made
δτ to be small compared to δx, and then ran the program with different delta sizes. Notice on the third
row of Table 4, I-I, I-CN, I-RS are not exactly near 4. Thence, with same δxs, we tried decreasing the δτ ,
and then the error ratio came to be near 4. This illustrates that δτ was not small enough to not effect
the O(δx2). Therefore, Table 4 demonstrates that the error ratio for each method is 4, which verifies the
correctness of the algorithm.

δx δτ1 δτ2 δτ3 I CN RS I-I I-CN I-RS
0.010000 0.004 0.002 0.001 3.2622 1.8792 2.7836 2.6862 1.8579 3.0001
0.008571 0.004 0.002 0.001 2.5878 1.8798 2.7525 1.9561 1.0646 1.8599
0.006667 0.004 0.002 0.001 2.0447 1.8787 2.7629 1.3215 30.8960 1.0556
0.006667 0.0004 0.0002 0.0001 1.9918 1.9226 2.4511 21.6636 1.1298 2.8492

Table 5: Error Validation of an American Put Option evaluated with respect to O(δτ) by different methods
at t = 0. Here are the names for each label in the Table 5: I = the implicit method, CN : the Crank-
Nicolson method, RS : the Rannacher-Smoothing method, ’I-’ refers to the improved version of PSOR.
For example, I-I refers to the improved version of PSOR method

It is harder to observe from Table 5 that the program is outputing the correct error ratio. We tried to
make the δx2 to be much smaller than δτ , in order to observe the effect of O(δτ). The correct error ratio for
the implicit method is 2 since its error bound is O(δτ)+O(δx2). Table 5 shows that I and I-I did get close
to 2. However, it seems that other methods are not getting 2 nor 4. Notice that δx2 are much smaller than
δτ , but δx2 is still about the same size as δτ2. This causes the error ratio to be affected by both O(δx2)
and O(δτ2). We could not make δx2 to be much smaller than δτ2, because it is computationally unfeasible.

Table 6 shows the price of an American Option with environment as Table 3 computed by the penalty
method. The reason why it is calculated separately from other methods is because they are computed
from the different space. The formulae for the penalty method is derived from S and τ space, whereas
the formulae for other methods are derived from x and τ space. The relationship between S and x is

S = Eex

22

Notice that there exists an exponential component involved, which makes the evenly space grid to be
uneven when it gets transformed to another space. However, our linear system Mum = bmdoes not solve
the PDE, LV correctly when the grid is unevenly spaced. Hence, the direct comparison will not be a fair
evaluation.

Price Penalty
0 10.0000

1.2500 8.7500
2.5000 7.5000
3.7500 6.2500
5.0000 5.0000
6.2500 3.7500
7.5000 2.5000
8.7500 1.5379
10.0000 0.8933
11.2500 0.4975
12.5000 0.2692
13.7500 0.1430
15.0000 0.0752
16.2500 0.0393
17.5000 0.0205
18.7500 0.0107

Table 6: Price of an American Put Option evaluated using the penalty method at t = 0

Moreover, Table 7 verifies the correctness of the algorithm with respect to O(δS2). But the correct-
ness of the algorithm with respect to O(δτ2) was not validated. This is due to the suffering from the
computational feasibility when we try to increase size of N until O(δτ2) dominates.

δτ δS1 δS2 δS3 Implicit-Penalty CN-Penalty
0.0017 2.5 1.25 0.625 4.5213 4.5429
0.0017 2 1 0.5 3.9739 3.9416
0.0017 1 0.5 0.25 4.1351 3.9247
0.0001 0.075 0.0375 0.01875 3.7679 3.9035

Table 7: Error Validation of an American Put Option evaluated with respect to O(δx2) by the penalty
method at t = 0.

Next, we evaluated the performance of each method. Typically, the PSOR iteration takes a lot of
iterations given its fine grid. However, we suspected that improved PSOR version ought to decrease
the iteration step enormously compared to the regular PSOR. Table 8 illustrates the huge improvement,
where it converges within eight iterations. This indicates that using the Black-Scholes formula to evaluate
the left side of the free boundary does help a lot, and free boundary converges within a very few steps,
especially even when the granularity of the grid is very small. In constrast, the penalty method, normally
converges within the two iterations.

For the purpose of assessing the overall performance of evaluating an option and to realize the practical
runtime scale, we measured the CPU time of each method. We mention that the penalty method and the
methods which involves PSOR were computed in the different space, so in order to have a fair comparision
between the two, we enforced the matrices sizes to be same. Moreover, we imposed the size of δx and

23

M N δτ δx Imp-PSOR CN-PSOR RS Improved-Imp Improved-CN
100 500 0.0004 0.012 63 37 63 8 8
100 550 0.0004 0.0109 74 43 74 8 8
100 650 0.0004 0.01 87 50 87 8 8
100 600 0.0004 0.0092 99 57 99 8 8

10 500 0.0004 0.012 536 305 536 8 8
20 500 0.0002 0.012 278 158 278 8 8
30 500 0.00013 0.012 190 108 190 8 8
40 500 0.0001 0.012 146 83 146 8 8

Table 8: Maximum iteration step to compute an American Put Option Price by different methods

δτ to be approximately the same, so that the errors are allocated distributedly. Although the improved
version of the PSOR method made great enhancement in speed, Table 9 indicates that the penalty method
has the fastest performance in general. Therefore, the penalty method is the most suitable method in
practice.

M N I CN RS II ICN IRS Imp-Penalty CN-Penalty
10 500 0.267633 0.193060 0.222842 0.080366 0.071208 0.070966 0.021927 0.023686
10 600 0.397176 0.232855 0.273083 0.138788 0.095581 0.095268 0.089753 0.067151
10 1000 1.325334 0.789202 0.883911 0.333361 0.320676 0.318319 0.041413 0.072715

Table 9: CPU time for each method on computing an American Put Option Price Here are the names for
each label in the Table 9: I = the implicit method, CN : the Crank-Nicolson method, RS : the Rannacher-
Smoothing method, ’I-’ refers to the improved version of PSOR. For example, I-I refers to the improved
version of PSOR method

24

9 Conclusion

In this paper, we went over evaluating the fair price of the European and American put option. Starting
from solving an European option to an American option valuation, we observed that the American option
is definitely a challenging problem compared to the European option pricing due to the free boundary
condition. We considered finite-difference approaches to solve the Black-Scholes PDE. As such, we still
carried out the methods, such as the explicit, implicit, Crank-Nicolson, Rannacher-Smoothing from the
European option valuation to the American option valuation problem. This indicates the significance of
Black-Scholes PDE, where it is the fundamental PDE equations to all various option pricing problem.
Moreover, we investigated the penalty method, which was very practical and efficient for solving an
American option pricing. The LU factorization and SOR method were applied for the solution of the
Black-Scholes PDE, and the PSOR and penalty method were employed for the solution of the LCP. Our
main interest was to inspect the performance between the improved version of PSOR, and the penalty
method. After thorough examinations, we concluded that the penalty method is more favorable in terms of
performance speed. However, the improved version of the PSOR still elicited big improvement compared
to the regular PSOR. Through this work, we consolidated our understanding of the Black-Scholes PDEs
and LCPs, and comprehended details of each numerical method on solving PDE problems. Additionally,
the emphasis on the importance of the profound understanding and sophisiticated evaluation of an option
is again recognized throughout this work. This work can be easily extended to solving an American call
option, and can definitely be arched over to solving an American put option with the additional cash flows
from dividends.

25

A Appendix

A.1 Stabiltiy on Explicit Finite-Difference Method

Let U(m) be option values at time m, and let α be ∂τ
(∂x)2 . The explicit finite-difference formula in

terms on matrix form is
u(m+1) = (I + αA)u(m) + b(m)

Let M = I + αA. Then
u(m+1) = Mu(m) + b(m)

Throughout the time step, m, from 1 to m, we will recursively have to compute

u(m) = Mmu(0) +

m−1∑
i=0

Mib(i)

Let λ be the eigenvalue of M such that Mv = λv

⇒Mmv = Mm−1Mv = Mm−1λv = λmv

⇒ |λ| ≤ 1 , otherwise Mmv→∞ as m→∞

As a consequence of Fourier analysis, assume (without any loss of generality) that umn takes the term
umn = λnsin(nω).

⇒um+1
n = (umn+1 + umn+1)α+ (umn − 2αumn)

⇒λm+1 sin(nω)α = (λm sin((n+ 1)ω) + λm sin((n− 1)ω))α+ λm sin(nω)(1− 2α)

⇒λm+1 sin(nω) = αλm(sin((n+ 1)ω) + sin((n− 1)ω)) + λm sin(nω)(1− 2α)

⇒λ sin(nω) = α(sin((n+ 1)ω) + sin((n− 1)ω)) + sin(nω)(1− 2α)

since 2 sin θ cosφ = sin(θ + φ) + sin(θ − φ)

⇒λ sin(nω) = α2 sin(nω) cos(ω) + sin(nω)(1− 2α)

⇒λ = α2 cos(ω) + (1− 2α)

⇒λ = α2(cos(ω)− 1) + 1

since sin2 z =
1− cos(2z)

2

⇒λ = −α4 sin(
ω

2
) + 1

⇒max(λ) = 1 , min(λ) = 1− 4α

Since we know that |λ| ≤ 1,

⇒ −1 ≤ 1− 4α ≤ 1

⇒ −2 ≤ 4α ≤ 0

⇒ 0 ≤ α ≤ 1

2

A.2 Convergence for the Crank-Nicolson Finite-Difference Method

The Crank-Nicolson Finite-Difference formula is

∂u

∂τ
=
∂2u

∂x2

u(x, τ + δτ)− u(x, τ)

δτ
=
u(x+ δx, τ)− 2u(x, τ) + u(x− δx, τ)

δx2
(∗)

26

Applying a Taylor’s series expenson on each term in the equation (∗), we get

u(x, τ + δτ) = (1 +
δτ

2

∂

∂τ
+
δτ2

4

∂2

∂τ2
+

δτ3

2 · 3!

∂3

∂τ3
+ ...)u(x, τ +

δτ

2
)

u(x, τ) = (1 +
δτ

2

∂

∂τ
− δτ2

4

∂2

∂τ2
+

δτ3

2 · 3!

∂3

∂τ3
− ...)u(x, τ +

δτ

2
))

u(x+ δx, τ) = (1 + δx
∂

∂x
+
δx2

2

∂2

∂x2
+
δx3

3!

∂3

∂x3
+ ...)u(x, τ)

u(x− δx, τ) = (1 + δx
∂

∂x
− δx2

2

∂2

∂x2
+
δx3

3!

∂3

∂x3
− ...)u(x, τ))

Expanding and reformulating the left side of equation (∗):

u(x, τ + δτ)− u(x, τ)

δτ
=

1

δτ
((1 +

δτ

2

∂

∂τ
+
δτ2

4

∂2

∂τ2
+

δτ3

2 · 3!

∂3

∂τ3
+ ...)u(x, τ +

δτ

2
)

− (1 +
δτ

2

∂

∂τ
− δτ2

4

∂2

∂τ2
+

δτ3

2 · 3!

∂3

∂τ3
− ...)u(x, τ +

δτ

2
))

=
∂u

∂τ
(x, τ +

δτ

2
) +

∂3u

∂τ3
(x, τ +

δτ

2
)
δτ2

2 · 3!

=
∂u

∂τ
(x, τ +

δτ

2
) +O((δτ2))

Expanding and reformulating the right side of equation (∗):

u(x+ δx, τ)− u(x− δx, τ)

2δx
=

1

2δx
((1 + δx

∂

∂x
+
δx2

2

∂2

∂x2
+
δx3

3!

∂3

∂x3
+ ...)u(x, τ)

− (1 + δx
∂

∂x
− δx2

2

∂2

∂x2
+
δx3

3!

∂3

∂x3
− ...)u(x, τ))

=
∂u

∂x
(x, τ) +

∂3u

∂τ3
(x, τ +

δτ

2
)
δτ2

3!

=
∂u

∂x
(x, τ) +O((δx2))

Then combining both the left and right derivations aboves, we attain

∂u

∂τ
+O((δτ2)) =

∂u

∂x
+O((δx2))

A.3 Indirectly measuring the correctness of American Option Pricing

Assume that O(δτ) is small compare to O((δx)2), so that O((δx)2) dominates. Consider three possible
grids where M is fixed and N = n, n

2 , and n
4 . Let erri be the error, such that vi − v for all i = 1, 2, 3,

and let v be the true American option price.

=
err1 − err2
err2 − err3

=
(v1 − v)− (v2 − v)

(v2 − v)− (v3 − v)

=
v1 − v2
v2 − v3

=
cδx2n − c(δxn

2)2

c(δxn

2)2 − c(δxn

4)2

= 4

27

This can also work vice versa, where we fix N and consider M to be m, m2 , and m
4 .

28

References

[1] D. Dang, Adaptive Finite Difference Methods for Valuing American Options, MSc Thesis, Computer
Science Dept., University of Toronto, 2007.

[2] L. Feng, V. Linetsky, J. Luis Morales and J. Nocedal, On the Solution of Complementarity Problems
Arising in American Options Pricing, Optimization Methods and Software, iFirst, 2010, pp. 1–13.

[3] J. Hull Options, Futures, and Other Derivatives, Pearson Education International, Inc., New Jersey,
07458.
[4] J. Morales, J. Nocedal and M. Smelyanskiy, An Algorithm for the Fast Solution of Symmetric Linear
Complementarity Problems, Numer. Math., 2008, pp. 251-266.

[5] P. Wilmot, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives, Cambridge Uni-
versity Press, 1995.

[6] J. Witte, and C. Reisinger Penalty Methods for the Solution of Discrete HJB Equations – Continuous
Control and Obstacle Problems, SIAM J. Numer. Anal. 50(2), 595-625, 2012.

29

