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In this supplementary material, we present some back-
ground information, derivations, and supporting explana-
tions.

Conservative untied auto-encoders
Towards Poincare’s criterion for untied AE using
differential forms
This section provides detailed derivations of Proposition 1
in Section 3.
Proposition 1. Consider an m-hidden-layer auto-encoder
defined as

r(x; θ) = W (m)h(m)
(
W (m−1)h(m−1)(

· · ·W (1)h(1) (x) · · ·
)

+ c(m−1)
)

+ c(m),

where θ = ∪mk=0θ
(k) such that θ(k) = {W (k), c(k)} are the

parameters of the model, and h(k)(·) is a smooth element-
wise activation function at layer k. Then the auto-encoder
is said to be conservative over a smooth simply connect do-
main K ⊆ RD if and only if its reconstruction’s Jacobian
∂r(x)
∂x is symmetric for all x ∈ K.
The high level idea is that simply finding the anti-

derivative of an auto-encoder vector field as proposed
in (Kamyshanska 2013) does not work for untied auto-
encoders. This is due to the difference in solving first or-
der ordinary differential equations for tied auto-encoders
and first order partial differential equations for untied auto-
encoders. Therefore, here we present a different approach
that uses differential forms to facilitate the derivation of the
existence condition of a potential energy function in the case
of untied auto-encoders.

The advantage of differential forms is that they allow us
to work with a generalized, coordinate free system. A dif-
ferential form α of degree l (l-form) on a smooth domain
K ⊆ Rd is an expression:

α =

D∑
i=1

fidxi. (1)
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Using differential form algebra and exterior derivatives, we
can show that the 1-form implied by an untied auto-encoder
is exact, which means that α can be expressed as α = dβ
for some β ∈ Λl−1(K). Let α be the 1-form implied by the
vector field of an untied auto-encoder. Then, we have

α =

D∑
i=1

ridxi, and dα =

D∑
i=1

d(ri ∧ dxi) (2)

where ∧ is the exterior multiplication, d is the differential
operator on differential forms, and r(·) is the reconstruction
function of the auto-encoder. Based on the exterior deriva-
tive properties, i) if f ∈ Λ0(K) then df =

∑D
i=1

∂f
∂xi

dxi and
ii) if α ∈ Λl(K) and β ∈ Λm(K) then αβ = (−1)lmβα,

dα =

D∑
i=1

d(ri ∧ dxi) (3)

=

D∑
i,j=1

∂ri
∂xj

(dxj ∧ dxi) (4)

= −
∑

1≤i<j<D

∂ri
∂xj

dxi ∧ dxj +
∑

1≤i<j<D

∂rj
∂xi

dxi ∧ dxj

(5)

=
∑

1≤i<j<D

(
∂ri
∂xj
− ∂rj
∂xi

)
dxi ∧ dxj (6)

According to the Poincare’s theorem, which states that ev-
ery exact form is closed and conversely, if α is closed then it
is exact in a simply connected region and α ∈ Λl(K), where
α is closed if dα = 0. Then, by Poincare’s theorem, we see
that

dα =
∑

1≤i<j<D

(
∂ri
∂xj
− ∂rj
∂xi

)
dxi ∧ dxj = 0 (7)

This is equivalent to requiring the Jacobian to be symmetric
for all x ∈ K

Relations between the sufficient conditions
Let’s re-state the two sufficient conditions:

1. IfR = CŴ such that C is symmetric and commutes with
WWT , then the auto-encoder vector field is conservative.



Figure 1: The weights of encoder W (Left) and weights of decoder RT (Right) for a contractive auto-encoder trained with
weight length constraints are shown.

2. IfR = ŴE such thatE is diagonal matrix, then the auto-
encoder vector field is conservative.

We can try to understand the role of symmetric matrix C
through the lens of spectral decomposition. Note that two
symmetric matrices commute if they share the same eigen-
space. Then,

CWDh′Dh′WT = QΛQTQΣQT = QΛΣQT (8)

whereQΛQT is the eigen decomposition ofC andQΣQT is
the eigen decomposition of WDh′Dh′WT . This illustrates
that one can find a C based on choosing an appropriate ma-
trix Λ, where Λ merely stretches or shrinks along the direc-
tion of the eigenvectors. Additionally, the role of the diag-
onal E in R = WDh′E can be explained as scaling the
pre-activation of the hidden units. This can be directly ob-
served re-expressing the condition in terms of elementwise
operations as

Rjl = WjlEll ∀l = 1 · · ·H, ∀j = 1 · · ·D. (9)

This amounts to “brightening” or “dimming” the filters R·l
depending on the diagonal matrix of Ell.

Now, we find C and E given the parameters W and R.
If R = CŴ such that C is symmetric and commutes with
ŴŴT , then we know that RŴT = ŴRT . Then, we can
find C as follows:

RŴT = ŴRT

CŴŴT = ŴRT

C = ŴRTAT (AAT )−1

where A = ŴŴT and AT (AAT )−1 is the right pseudo-
inverse. Similarly, we can also compute E as follows:

RŴT = ŴRT

ŴEŴT = ŴRT

E = (ŴT Ŵ )−1ŴT ŴRT Ŵ (ŴT Ŵ )−1

E = RT Ŵ (ŴT Ŵ )−1

since (WTW )−1WTW = I .

Further experiments on symmetry
One natural way to regularize the auto-encoder is to use a
weight length constraint ||wi||2 = α for all i = 1 · · ·H . A
weight length constraints also implies a form of contraction,
because the contractive term (norm of Jacobian matrix w.r.t
hidden units) contains the term ‖W‖2.

Figure 1 demonstrates that weight length indeed helps
∂r(x)
∂x to be more symmetric. An auto-encoder trained with

weight length constraints, denoted as “AE sig wl”, achieves
a symmetry score of 0.9914 and, and a CAE with weight
length constraints denoted as ”CAE sig wl”, a symmetric
score of 0.9916.

Furthermore, as shown in Figurew1, the encoder and de-
coder weights of the contrastive auto-encoder trained with
weight length constraints. are indistinguishable from one an-
other. The increase in the symmetricity is clear when they
are compared to Figure 1 in the original paper. In that case,
the decoder weights are “smoothed” versions of the encoder
weights, which is not the case here. This implies that R is
becoming like W when we straightly enforce ‖W‖ = ‖R‖,
which brings back to having a symmetric auto-encoder.
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Figure 2: Figure presents symmetric distance of ∂r(x)
∂x for

two hidden layer untied auto-encoder

Based on above results, we see that our sufficient condi-
tion could explain what is going on with filters for the auto-
encoder with sigmoid activation. Moreover, having a weight
length constraints, ‖W‖ = ‖R‖ leads to R→W .∑

k

h′(wT
k x)‖w‖2 < D (10)

will make the point x to be sink of the auto-encoders dy-
namics is desirable condition.

Next, an obvious question to ask is will deeper auto-
encoders be symmetric as well? We plotted ∂r(x)

∂x for two
hidden layer untied auto-encoders. Figure 2 illustrates that
they have harder time becoming fully symmetric, but still
desire for symmetricity.

Another way of explicitly measuring the conservativeness
as the auto-encoder gets trained is to look at the curl. In our
experiments, we created three 2D syntehtic datasets to un-
derstand the auto-encoder’s dynamics while learning. The
three datasets consists of manifolds that looks like line, cir-
cle, and spiral. We looked at the changes in the vector field
of before training, intermediate stage, and final stage. We
also examined the magnitude of the curl and show that mag-
nitude of curl decreases during the training. We also notice

Figure 3: Histograms of hidden activations for sigmoid units
without weight constraints (left) and with weight constraints
(right)

that sigmoid activation deforms the vector fields very slowly
whereas, having ReLU activion function, changes the vector
fields very rapidly. Figure 4, 5, and 6 shows the initial, final
vector fields, and the magnitude of curl near the manifold.
The colour of vector field indicates the mean reconstruction
error rates.

In fact, after conducting this experiments, we argue that
studying the dynamics of vector field is a excellent way of
understanding the changes in the energy surface during the
training, because we get the idea of how energy surface de-
forms by observing the changes in the vector fields.

Autoencoder ReLU ReLU+wl sig.+wl sig.+wl
AE 95.9% 98.7% 95.1% 99.1%
CAE 95.2% 98.6% 97.4% 99.1%

Table 1: Symmeticity of ADW after training AEs with
500 units on MNIST for 100 epochs. We denote the auto-
encoders with weight length constraints as ’+wl’.

Decomposing the vector field
Before describing the Hodge-Helmholtz decomposition, it is
worth mentioning that many communities such as fluid me-
chanics, physics, and mathemetics have developed various
projection methods to decompose the dynamics of incom-
pressible fluids for the simulations(Chorin 1997; 1968). As
well, the Helmholtz-Hodge decomposition has be employed
to various research fields such as computer graphics(Foster
and Metaxas 1996; 1997), computer vision(Gao et al. 2010;
Guo, Mandal, and Li 2004), and robotics (Mochizuki and
Imiyya 2009). The literature review paper by (Bhatia et al.
2013) expounds much more applications of the Helmholtz-
Hodge decomposition in different disciplines including fluid
mechanics, physics, computer graphics, and such.

The Helmholtz-Hodge decomposition
The fundamental theorem of vector calculus, also known
as Helmhotz decomposition (James 1966), states that any
vector field can be expressed as the sum of an irrotational
and a solenoidal field. Furthermore, extending from R3 to
differential forms on a Riemannian manifold, the Hodge
Helmholtz decomposition of any arbitrary k-form in terms
of a k − 1-form, k + 1 form and a harmonic k-form:

ω = dα+ δβ + γ (11)

where d is the exterior derivative, δ the co-differential, and
∆γ = 0. This means that any vector field can be decom-
posed into scaler(symmetric), solenoidal (anti-symmetric
tensor), and harmonic (rotational) vector fields and they are
orthogonal to each other. Here we work with 1-forms since
they correspond to vector fields. Based on Hodge decom-
position theorem, any 1-form (vector field) can be orthogo-
nally decomposed into a direct sum of a scalar, solenoidal,
and harmonic components. This shows that it is always pos-
sible, in theory, to get the closest, in a least square sense,
conservative vector field to a non-conservative one.
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Figure 4: Initial and final vector field after training untied auto-encoder on line dataset.
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Figure 5: Initial and final vector field after training untied auto-encoder on circle dataset.
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Figure 6: Initial and final vector field after training untied auto-encoder on spiral dataset.
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