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Abstract

This note was made after studying the Dirichlet process (DP) using various resources. This is
written as a simple summary of the DP and should not to be used as a study guide. The code
for Chinese restaurant process is included.

1 Basic Distributions

Before diving into the Dirichlet process, we will go over some of the basic distributions that may help
us understand or recall.

1.1 Beta-Bernoulli Model

The Bernoulli distribution is a probability distribution of a random variable that has either success or
failures with probability θ and 1 − θ. It is simple as tossing a coin with one side of the face being
probability θ. After tossing N times, the probability of getting the same toss is

p(D|θ) = θ
∑

i I(xi=1)(1− θ)
∑

i I(xi=0)

where D is the result from tossing a coin N times and I is the indicator function.

The Beta distribution is a probability distribution over probabilities θ.

p(θ|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (1)

E[Beta(θ|α, β)] =
α

α+ β
(2)

where α and β are the positive scaling parameters (hyper-parameters) and Γ(α+β)
Γ(α)Γ(β) is the normalization

term. Of course, the distribution is over the probabilities, so θ must be between 0 and 1. Depending on
parameter α and β, the function varies in [0, 1].

We will consider the problems from the Bayesian perspective. For example, consider the batting average
of a baseball player. The probability of the base hit is

θ =
# of times a player gets a base hit

# of times he goes up to bat
.

This requires the record of a player’s previous hits. However, suppose that we do not have enough data
due to this player being a rookie. Then, we would like to input some prior knowledge about the batting
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probability. This task can be modelled using the Beta-Bernoulli distribution.
p(θ|D) ∝ p(D|θ)p(θ)

= Bernoulli(D|θ)Beta(θ|α, β)

= [θN1(1− θ)N0 ][θα−1(1− θ)β−1]

= θN1+α−1(1− θ)N0+β−1

∝ Beta(θ|N1 + α− 1, N0 + β − 1)

where N1 =
∑
i I(xi = 1) and N0 =

∑
i I(xi = 0). The posterior probability of θ is based on the

likelihood and prior, which are measured by the Bernolli and Beta distribution. We can see from the
derivation that the Beta distribution is a conjugate-prior of Bernoulli distribution.

Back to the batting problem. In order to input prior knowledge on the batting probability, we can look
at the average batting among the rookie baseball players. Suppose the average batting is α

α+β , then we
can use the Beta distribution with paramter α and β.

1.2 Dirichlet-Categorical Model

The Multinomial distribution is a multivariate generalization of the binomial distribution. They are also
known as the Categorical distribution. The idea is that given k categories and one of the k categories
are chosen for each trial.

Multi(D|θ) ∝
∏

θ
∑

j I(xj=1)

k

where
∑
k θk = 1. For example, we throw a die with k faces n times. Each face of a die has θk

probability to be chosen.

The Dirichlet distribution is also a multivariate generalization of the Beta distribution. It can be viewed
as a distribution over the distribution θ.

Dir(θ|α) =

∏
Γ(αi)

Γ(α0)

∏
k

θαk−1
k

where α0 =
∑
k αk and 1

β(α) =
∏

Γ(αi)
Γ(α0) is the normalization term. The Dirichlet distribution is defined

over the (K − 1) simplex S − {θ ∈ Rk|θk ≥ 0,
∑
k θk = 1}.

In Bayesian statistics, Dirichlet distributions are used as prior of the multinomial distribution. Similar
to Beta-bernoulli model, Dirichlet-categorical model becomes

p(θ|D) ∝ p(D|θ)p(θ)

=

N∏ K∏
θ
Ik(xi=1)
k

K∏
θαk−1
k

=

K∏
θ
∑N Ik(xi=1)
k

K∏
θαk−1
k

=

K∏
θnk+αk−1
k

∝ Dir(θ|N + α)

where nk =
∑N Ik(xi = 1) and N = {(n1, n2, · · · , nK)}. At the test time,

p(x|D) =

∫
p(x|D, θ)p(θ|D)dθ

=

∫
θxp(θ|D)dθ

= E[θx] =
nx + αx

N + α0
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2 Dirichlet Process
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Figure 1: The Dirichlet Process

The Dirichlet Process is a stochastic process that
has a collection of probability distributions.

G ∼ DP(α,G0)

whereG0 is the base distribution and α is positive
scaling parameter. Figure 1 shows the diagram
of the Dirichlet Process. We can see that base
distributionG0 is over a continous domain andG
is over a discrete space. Note that the likelihood
of drawing two equal samples from G0 is zero
since it is in continuous domain, but the chances
of drawing two of the same samples in G is not
zero. The joint distribution over the samples is

p(x1, · · · , xn|G0) =

∫
p(G0)p(G|G0)

N∏
i

p(xi|G)dG

Generating a new sample based on the previous sample gives us

xn|xn−1, · · · , x1 =

{
xn = xi with probability # of xis

N+α−1

new xn with probability α
N+α−1

This sampling strategy has the effect of richer get richer, because the likelihood term is the funtion of
the number of samples.

2.1 The Chinese Restaurant Process

This sampling strategy is closely related the Chinese restaurant process. Consider a restaurant with
possibly infinitely many tables xi. Whenever a customer enters the restaurant, there is a chance that a
customer will join his friend’s table and another chance that a customer will sit at a new table. As there
are more friends at the table, there is a higher chance of a new customer sitting in that table. Hence, if
we think of each table as cluster, then the Chinese restaurant process has the clustering effect.

In summary, we generate the table assignments Gi accroding to the Chinese restaurant process by
generating the table parameters φi from the base distribution G0. Given the table assignments and table
parameters, we generate each data points with the distribution F (φGi) (like a Gaussian distribution with
the mean and variance φGi ).

2.2 The Polya Urn Model

In the Polya Urn Model, we assume that there is a distribution G0 over the colours. We start with an
empty urn and we are supposed to draw the coloured balls from the urn. But first, we pick a coloured
ball from the base distribution G0 and place the ball into the urn. Then, we pick a ball from the urn.

In summary, we generate the colours φi from the base distirbutionG0 according to the Polya Urn model.
Then, we sample the color balls from the distribution F (φi).

2.3 The Stick-Breaking Process

The idea of stick-breaking process goes like this. Suppose we have a long thin 1 metre chocolate bar.
First, we cut the chocolate bar. Then, pick a friend based on how good of friends they are and give it
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to that friend. Similarly, that friend will repeat the process again. This process can go on forever, but
the chocolate bar was originally a metre long and it will keep on shrinking. In here, the length of the
chocolate you received is the probability of your feelings towards that friend, which is G.

In summary, we can generate a stick length wi according to the stick process and stick parameter φi
from the base distribution G0. Then, we generate Gi from the multinomial distribution using stick
length as the parameter wi. Then, we sample the data point xi from the distribution F (φGi

).
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