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Motivations and Contributions
• Recent advance in variational inference is to

use the inference network as the approximate
posterior distribution.

• Obtaining a class of variational distributions
which is flexible enough to accurately model
the true posterior distribution is a challenge.

• The denoising criterion - input is corrupted
by adding some noise and the model is asked
to recover the original input.

• We show that injecting noise both in input
and in the stochastic hidden layer can be ad-
vantageous.

Background
Variational Inference
Variational inference is an approximate inference method where
the goal is to approximate the intractable posterior distribution
p(z|x), by a tractable approximate distribution qφ(z).

log p(x) = Eqφ(z)

[
log

p(x, z)

qφ(z)

]
+ KL(qφ(z)||p(z|x)).

Variational auto-encoder
Variational auto-encoder (VAE) is that the approximate distri-
bution q is conditioned on the observation x, resulting in a form
qφ(z|x)

log pθ(x) ≥ Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
(1)

= Eqφ(z|x) [log pθ(x|z)]− KL(qφ(z|x)||p(z)).

• The inference network represents qφ(z|x). The variational
parameter φ is the weights of the neural network.

• The generative network represents pθ(x|z). The θ is the
weights of the neural network.

Noise Injection to Inference Network
Example 1. Let x ∈ {0, 1}D be a D-dimension observation, and
consider a Bernoulli corruption distribution pπ(x̃|x) = Ber(π)
around the input x. Then,

Eppi(x̃|x)

[
qφ(z|x̃)

]
=

K∑
i=1

qφ(z|x̃i)pπ(x̃i|x) (2)

has the form of a finite mixture of Gaussian and the number of mixture
component K is 2D .
Example 2. Consider a Gaussian corruption model p(x̃|x) =
N(x|0, σI). Let qφ(z|x̃) be a Gaussian inference network. Then,

Ep(x̃|x)

[
qφ(z|x̃)

]
=

∫
x̃
qφ(z|x̃)p(x̃|x)dx̃. (3)

1. If qφ(z|φT x̃) = N (z|µ = φT x̃, σ = σ2I) such that the
mean parameter is a linear model of weight vector φ and
input x̃, then the Equation 3 is a Gaussian distribution.

2. If qφ(z|x̃) = N (z|µ(x̃), σ(x̃)) where µ(x̃) and σ(x̃) are
non-linear functions of x̃, then the Equation 3 is an infinite
mixture of Gaussian.

Training Procedure
A simple way of training VAE with the denoising criterion:

1. sample a corrupted input x̃(m) ∼ p(x̃|x),

2. sample z(l) ∼ q(z|x̃(m))

3. sample reconstructed images from the generative net-
work pθ(x|z(l)).

The above procedure can be seen as a special case of optimizing
the following objective.

Ldvae '
1

MK

M∑
m

K∑
k

log
pφ(x, z(k|m))

qφ(z(k|m)|x̃(m))
(4)

where x̃(m) ∼ p(x̃|x) and z(k|m) ∼ qφ(z|x̃(m)).

Denoising Variational Lower Bound
Lemma 1. Consider an approximate posterior distribution of the fol-
lowing form:

qΦ(z|x) =

∫
z′
qϕ(z|z′)qψ(z′|x)dz′,

here, we use Φ = {ϕ,ψ}. Then, given pθ(x, z) = pθ(x|z)p(z), we
obtain the following inequality:

log pθ(x) ≥ EqΦ(z|x)

[
log

pθ(x, z)

qϕ(z|z′)

]
≥ EqΦ(z|x)

[
log

pθ(x, z)

qΦ(z|x)

]
.

The denoising variational lower bound
For the approximate distribution q̃φ(z|x) =

∫
qφ(z|x̃)p(x̃|x)dx̃,

we can write the standard variational lower bound as follows:

log pθ(x) ≥ Eq̃φ(z|x)

[
log

pθ(x, z)

q̃φ(z|x)

]
def
= Lcvae. (5)

Ldvae
def
= Eq̃φ(z|x)

[
log

pθ(x, z)

qφ(z|x̃)

]
. (6)

Applying Lemma 1 to Equation 5, we get:

log pθ(x) ≥ Ldvae ≥ Lcvae. (7)

Note that the above does not necessarily mean that Ldvae ≥
Lvae where Lvae is the lower bound of VAE with Gaussian dis-
tribution in the inference network.

Proposition 1. Maximizing Ldvae is equivalent to minimizing the
following objective

Ep(x̃|x)[KL(q̃φ(z|x̃)||p(z|x))]. (8)

Equivalently, log pθ(x) = Ldvae+Ep(x̃|x)[KL(q̃φ(z|x̃)||p(z|x))].

Results
Classification Performance

Negative variational lower bounds using different corruption levels on MNIST (the lower, the better). The
salt-and-pepper noises are injected to data x during the training.

Model # Hidden Noise Level
Layers 0 5 10 15

DVAE (K=1) 1 96.14 ± 0.09 95.52 ± 0.12* 96.12 ± 0.06 96.83 ± 0.17
DVAE (K=1) 2 95.90 ± 0.23 95.34 ± 0.17* 95.65 ± 0.14 96.17 ± 0.17
DVAE (K=5) 1 95.20 ± 0.07 95.01 ± 0.04* 95.55 ± 0.07 96.41 ± 0.11
DVAE (K=5) 2 95.01 ± 0.07 94.71 ± 0.13* 94.90 ± 0.22 96.41 ± 0.11
DIWAE (K=5) 1 94.36 ± 0.07 93.67 ± 0.10* 93.97 ± 0.07 94.35 ± 0.08
DIWAE (K=5) 2 94.31 ± 0.07 93.08 ± 0.08* 93.35 ± 0.13 93.71 ± 0.07

Negative variational lower bound using different corruption levels on the Frey Face dataset. Gaussian
noises are injected to data x during the training.

Model # Hid. Noise Level
Layers 0 2.5 5 7.5

DVAE (K=1) 1 1304.79 ± 5.71 1313.74 ± 3.64* 1314.48 ± 5.85 1293.07 ± 5.03
DVAE (K=1) 2 1317.53 ± 3.93 1322.40 ± 3.11* 1319.60 ± 3.30 1306.07 ± 3.35
DVAE (K=5) 1 1306.45 ± 6.13 1320.39 ± 4.17* 1313.14 ± 5.80 1298.40 ± 4.74
DVAE (K=5) 2 1317.51 ± 3.81 1324.13 ± 2.62* 1320.99 ± 3.49 1317.56 ± 3.94
DIWAE (K=5) 1 1318.04 ± 2.83 1320.18 ± 3.43 1333.44 ± 2.74* 1305.38 ± 2.97
DIWAE (K=5) 2 1320.03 ± 1.67 1334.77 ± 2.69* 1323.97 ± 4.15 1309.30 ± 2.95

Negative variational lower bounds using different corruption levels on MNIST (the lower, the better) with
recurrent neural network as a inference network. The salt-and-pepper noises are injected to data x during
the training.

Model # Hidden Noise Level
Layers 0 5 10 15

DVAE (GRU) 1 96.07 ± 0.17 94.30 ± 0.09* 94.32 ± 0.12 94.88 ± 0.11
DIWAE (GRU) 1 93.94 ± 0.06 93.13 ± 0.11 92.84 ± 0.07* 93.03 ± 0.04

• All of the methods with denoising criterion surpassed the performance of vanilla VAE and vanilla
IWAE as shown in Table 1 and Table 2.

• DVAE and DIWAE, both of the models are not very sensitive with respect to the two types of noises:
Gaussian and salt and pepper. They are more sensitive to the level of the noise rather than the type.

• We notice that when VAE combined with GRU tend to severely overfit on the training data and it ac-
tually performed worse than having a neural network at the inference network. However, denoising
criterion redeems the overfitting behaviour and produce much better results

• We have used a simple corruption distribution using a global corruption rate (the parameter of the
Bernoulli distribution or the variance of the Gaussian distribution) to all pixels in the images. To see
if a more sensible corruption can lead to an improvement, one may propose a more sensible noise
distribution that depends on data in the future.


