Analyzing the Dynamics of Gated Autoencoders

Daniel Jiwoong Im

Outline

- Preliminaries
- Methodology
- Experiments
- Conclusion

- Unsupervised Learning
- Given Input X -> Reproduce X

- Unsupervised Learning
- Input X -> Encode -> Decode -> reproduced X

- Unsupervised Learning
- Input X -> Encode -> Decode -> reproduced X

$$\min_{\theta} J(\mathbf{x}) = \min_{\theta} \|\mathbf{x} - r(f(\mathbf{x}))\|^2$$

n

E		•	-	5			•	•	•
	1 1 1		•	4		0.4	1	50	
•	1	(6)	管		Jul .	•)	50	
	1)		2	2	•	•	1
	0		•	-	1	2	5		
		3		1	1		and the second		"
					1	3		•	•
	3						-		1
		•		•	•				9
	to a	•	調整		10	5	1 A	1	

0	3	6	3	1	0	1	0	1	3
0	7	Ó	6	2	1	8	N	đ	0
0	1	4		3	0	0	0	ų,	1
0	0	3	5	3	3	1	ŝ	1	\mathbf{T}
0	5	X	ŝ	1	9	h.	5	i i	2
0	0	1	(\mathbf{c})	1	2	4	3	1	3
6	3	٥	3	6	3	6	13	1	3
1	0	60	0	7	1	0	0	¢,	3
57	2	2	0	6	6	U	1	1	5
-	7	5	7	0	0	0	0	0	3

- Unsupervised Learning
- Given Input X,Y -> reproduced X|Y

- Unsupervised Learning
- Input X,Y -> Encode X|Y -> Decode -> reproduced X|Y

- Unsupervised Learning
- Input X,Y -> Encode X|Y -> Decode -> reproduced X|Y

 $\mathbf{h} = f(\mathbf{x}|\mathbf{y}) = \sigma(W^M(W^F\mathbf{x} \odot W^F\mathbf{y}))$ $\mathbf{x} = r(\mathbf{x}, \mathbf{y}) = \sigma(W^{F^T}(W^{M^T}\mathbf{h} \odot W^F\mathbf{y}))$

(Memisevic 2011)

- Unsupervised Learning
- Input X,Y -> Encode X|Y -> Decode -> reproduced X|Y

 $\min_{\theta} J(\mathbf{x}|\mathbf{y}) = \min_{\theta} \|\mathbf{x} - r(f(\mathbf{x}|\mathbf{y})|\mathbf{y})\|^2$

(Memisevic 2011)

- Unsupervised Learning
- Input X,Y -> Encode X|Y -> Decode -> reproduced X|Y
- Learns to relate X and Y.

(Memisevic 2013)

(Memisevic 2013)

What do you have to remember from Preliminaries?

• Not much!

What do you have to remember from Preliminaries?

- Not much!
- Just ...

What do you have to remember from Preliminaries?

- Not much!
- Just ...

$$\mathbf{\hat{y}} = r(\mathbf{y}|\mathbf{x})$$

Vector Field of : $\mathbf{y} - r(\mathbf{y}|\mathbf{x})$

• Let Gated Auto-encoder to run under this dynamics

Vector Field of : $\mathbf{y} - r(\mathbf{y}|\mathbf{x})$

- Let Gated Auto-encoder to run under this dynamics
- i.e. $\mathbf{x} \to r(\mathbf{x}|\mathbf{y}) \to r(r(\mathbf{x}|\mathbf{y})|\mathbf{y}) \cdots r(\cdots r(\mathbf{x}|\mathbf{y})|\mathbf{y})$

Vector Field of : $\mathbf{y} - r(\mathbf{y}|\mathbf{x})$

- Let Gated Auto-encoder to run under this dynamics
- i.e. $\mathbf{x} \to r(\mathbf{x}|\mathbf{y}) \to r(r(\mathbf{x}|\mathbf{y})|\mathbf{y}) \cdots r(\cdots r(\mathbf{x}|\mathbf{y})|\mathbf{y})$

Vector Field of : $\mathbf{y} - r(\mathbf{y}|\mathbf{x})$

- Let Gated Auto-encoder to run under this dynamics
- i.e. $\mathbf{x} \to r(\mathbf{x}|\mathbf{y}) \to r(r(\mathbf{x}|\mathbf{y})|\mathbf{y}) \cdots r(\cdots r(\mathbf{x}|\mathbf{y})|\mathbf{y})$

• For some open set \mathcal{U} , a continuously differentiable function $F: \mathcal{U} \to \mathbb{R}^m$ defines a gradient field if and only if

$$\frac{\partial F_i(\mathbf{y})}{\partial y_j} = \frac{\partial F_j(\mathbf{y})}{\partial y_i} \quad \forall i, j = 1 \cdots n$$

• For some open set \mathcal{U} , a continuously differentiable function $F: \mathcal{U} \to \mathbb{R}^m$ defines a gradient field if and only if

$$\frac{\partial F_i(\mathbf{y})}{\partial y_j} = \frac{\partial F_j(\mathbf{y})}{\partial y_i} \quad \forall i, j = 1 \cdots n$$

• Implication?

• For some open set \mathcal{U} , a continuously differentiable function $F: \mathcal{U} \to \mathbb{R}^m$ defines a gradient field if and only if

$$\frac{\partial F_i(\mathbf{y})}{\partial y_j} = \frac{\partial F_j(\mathbf{y})}{\partial y_i} \quad \forall i, j = 1 \cdots n$$

- Implication?
 - The vector field is conservative field

• For some open set \mathcal{U} , a continuously differentiable function $F: \mathcal{U} \to \mathbb{R}^m$ defines a gradient field if and only if

$$\frac{\partial F_i(\mathbf{y})}{\partial y_j} = \frac{\partial F_j(\mathbf{y})}{\partial y_i} \quad \forall i, j = 1 \cdots n$$

- Implication?
 - The vector field is conservative field
 - The vector field is the gradient of scaler field

$$r(\mathbf{y}|\mathbf{x}) - \mathbf{y} = \nabla E$$

• How much energy did GAE took to run??

How much energy did GAE took to run??

$$E = \int \nabla E dt = \int F dt$$

How much energy did GAE took to run??

$$E = \int \mathbf{y} - r(\mathbf{y}|\mathbf{x}) d\mathbf{y}$$

• How much energy did GAE took to run??

$$E = \int \mathbf{y} - r(\mathbf{y}|\mathbf{x}) d\mathbf{y}$$
$$E(\mathbf{y}|\mathbf{x}) = \int h(\mathbf{u}) d\mathbf{u} - \frac{1}{2}\mathbf{y}^2 + const$$

• Consider our non-linear function h to be a sigmoid function $\sigma(\cdot) = 1/(1 + \exp(-\cdot))$

$$E(\mathbf{y}|\mathbf{x}) = \int h(\mathbf{u})d\mathbf{u} - \frac{1}{2}\mathbf{y}^2 + const$$

• Consider our non-linear function h to be a sigmoid function $\sigma(\cdot) = 1/(1 + \exp(-\cdot))$

$$E(\mathbf{y}|\mathbf{x}) = \int h(\mathbf{u})d\mathbf{u} - \frac{1}{2}\mathbf{y}^2 + const$$

$$E_{\sigma}(\mathbf{y}|\mathbf{x}) = \sum_{k} \log \left(1 + \exp \left(W^{M}(W_{k}^{F}\mathbf{y} \odot W_{k}^{F}\mathbf{x})\right)\right) - \frac{\mathbf{y}^{2}}{2} + const$$

• Consider our non-linear function h to be a sigmoid function $\sigma(\cdot) = 1/(1 + \exp(-\cdot))$

$$E_{\sigma}(\mathbf{y}|\mathbf{x}) = \sum_{k} \log \left(1 + \exp \left(W^{M}(W_{k}^{F}\mathbf{y} \odot W_{k}^{F}\mathbf{x})\right)\right) - \frac{\mathbf{y}^{2}}{2} + const$$

 This equation is same as Free Energy of Factored Gated Restricted Boltzmann Machine with ignoring bias for simplicity

Theorem 1. Consider a CAE with encoder and decoder:

$$\begin{split} h(\mathbf{x}) &= h(W^M((W^F\mathbf{x})^2) + \mathbf{b})\\ r(\mathbf{x}|h) &= (W^F)^T(W^F\mathbf{x} \odot (W^M)^T h(\mathbf{x})) + \mathbf{a}, \end{split}$$

where $\theta = \{W^F, W^M, \mathbf{a}, \mathbf{b}\}$ are the parameters of the model, and $h(\cdot) = \frac{1}{1 + \exp(-\cdot)}$ is a sigmoid function. Moreover, consider a Covariance Restricted Boltzmann Machine [12] with Gaussian-distributed visibles and Bernoulli-distributed hiddens, such that its energy function is defined by

$$E^{c}(\mathbf{x},\mathbf{h}) = rac{(\mathbf{a}-\mathbf{x})^{2}}{\sigma^{2}} - \sum_{f} P\mathbf{h}(C\mathbf{x})^{2} - \mathbf{b}\mathbf{h}.$$

Then the energy function of the CAE with dynamics $r(\mathbf{x}|\mathbf{y}) - \mathbf{x}$ is equivalent to the free energy of Covariance RBM up to a constant:

$$E(\mathbf{x}, \mathbf{x}) = \sum_{k} \log \left(1 + \exp \left(W^M (W^F \mathbf{x})^2 + \mathbf{b} \right) \right) - \frac{\mathbf{x}^2}{2} + \text{const}$$
(11)

 Kamyshanska et al 2013 showed that free energy of Auto-encoder is same as Gaussian Bernoulli RBM

 Kamyshanska et al 2013 showed that free energy of Auto-encoder is same as Gaussian Bernoulli RBM

Corollary 1.1. The energy function of a Mean-covariance auto-encoder and the free energy of a Mean-covariance RBM (mcRBM) with Gaussian-distributed visibles and Bernoulli-distributed hiddens are equivalent up to a constant. The energy of the mcAE is:

$$E = \sum_{k} \log \left(1 + \exp \left(-W^M (W^F \mathbf{x})^2 - \mathbf{b} \right) \right) + \sum_{k} \log \left(1 + \exp \left(W \mathbf{x} + \mathbf{c} \right) \right) - \mathbf{x}^2 + \text{const} \quad (12)$$

where $\theta = \{W, \mathbf{c}\}$ parameterize the mean mapping units and $\theta = \{W^F, W^M, \mathbf{a}, \mathbf{b}\}$ parameterize the covariance mapping units.

- Input X & Structured Output Y
- Predict Y with Neural Network, $\tilde{\mathbf{y}} = f_{NN}(\mathbf{x})$

- Back to structured Prediction!!
- Input X & Structured Output Y
- Predict Y with Neural Network, $\tilde{\mathbf{y}} = f_{NN}(\mathbf{x})$

- Input X & Structured Output Y
- Predict Y with Neural Network, $\tilde{\mathbf{y}} = f_{NN}(\mathbf{x})$

• Problem : each component of $\mathbf{\tilde{y}}$ is independently predicted by Neural Net!!

• Remember our score function?

$$E_{\sigma}(\mathbf{y}|\mathbf{x}) = \sum_{k} \log \left(1 + \exp \left(W^{M}(W_{k}^{F}\mathbf{y} \odot W_{k}^{F}\mathbf{x})\right)\right) - \frac{\mathbf{y}^{2}}{2} + const$$

- Let's minimize the energy with respect to $\mathbf{\tilde{y}}$

 $\nabla_{\tilde{\mathbf{y}}} E_{\sigma}(\mathbf{y}|\mathbf{x})$

- Neural Net gave good initialization of $\mathbf{\tilde{y}}\,$. We fine-tune the structured prediction using our score function

Algorithm 1 Structured Output Learning via GAE scoring

· Train a Neural Network to predict the structured output.

$$\underset{\theta}{\operatorname{argmin}} l(\mathbf{x}, \mathbf{y}; \theta) = \|\mathcal{N}\mathcal{N}(\mathbf{x}_{train}; \theta) - \mathbf{y}_{train}\|^2$$
(20)

Train a Gated Auto-encoder with input (x, y)_{train}.

$$\underset{\theta}{\operatorname{argmin}} l(\mathbf{x}, \mathbf{y}; \theta) = \| r(\mathbf{y}_{train} | \mathbf{x}_{train}, h, \theta) - \mathbf{y}_{train} \|^2$$
(21)

where $r(\mathbf{y}_{train} | \mathbf{x}_{train}, h, \theta)$ is the reconstruction function of \mathbf{y}_{train}

- For each test data point $\mathbf{x}_i \in \mathcal{X}_{test}$ do
 - 1. Initialize the output using Neural Network.

$$\hat{\mathbf{y}} = \mathcal{N}\mathcal{N}(\mathbf{x}_{test}) \tag{22}$$

While $||E_{t+1}(\hat{\mathbf{y}}|\mathbf{x}) - E_t(\hat{\mathbf{y}}|\mathbf{x})|| > \epsilon$ converge do - Compute $\nabla_{\hat{\mathbf{y}}} E$ - Update $\hat{\mathbf{y}} = \hat{\mathbf{y}} - \lambda \nabla_{\hat{\mathbf{y}}} E$ where ϵ is the tolerance rate.

• Tested on two Gated Auto-encoder architecture.

(a) Model 1

• Tested on two Gated Auto-encoder architecture.

- Model 1 models relationship between x and y
- Model 2 models correlation between y itself

- Deep Learning Benchmark Dataset
 - Rectangle
 - Rectangle with background Image
 - Convex
 - MNIST
 - Rotated MNIST
 - MNIST with Random Noisy Background
 - MNIST with background Image
 - Rotated MNIST with background Image

• Problem: Energy function is unnormalized function.

- Problem: Energy function is unnormalized function.
- Solution: We adapt Gated softmax Classifier
 (Memisevic 2011)

Solution: We adapt Gated softmax Classifier
 (Memisevic 2011)

Algorithm:

1. Train an Auto-encoder and Gated Auto-encoder for each class

Solution: We adapt Gated softmax Classifier
 (Memisevic 2011)

Algorithm:

1. Train an Auto-encoder and Gated Auto-encoder for each class

Solution: We adapt Gated softmax Classifier
 (Memisevic 2011)

Algorithm:

1. Train an (denoised) mean covariance (gated) Auto-encoder for each class with tied weights and inputs.

- We have score for each class

Solution: We adapt Gated softmax Classifier
 (Memisevic 2011)

Algorithm:

1. Train an (denoised) mean covariance (gated) Auto-encoder for each class with tied weights and inputs.

- We have score for each class

2. Train the mean-covariance Auto-encoder scoring coefficient

$$P_{GAE}(y_i|\mathbf{x}) = \frac{\exp(E_i^C(\mathbf{x}) + B_i)}{\sum_j \exp(E_j^C(\mathbf{x}) + B_j)}, P_{mcAE}(y_i|\mathbf{x}) = \frac{\exp(E_i^M(\mathbf{x}) + E_i^C(\mathbf{x}) + B_j)}{\sum_j \exp(E_j^M(\mathbf{x}) + E_j^C(\mathbf{x}) + B_j)}$$
(19)

DATA	SVM	RBM	DEEP	GSM	AES	GAES	mcAES
	RBF		SAA ₃				
RECT	2.15	4.71	2.14	0.56	0.84	0.61	0.54
RECTIMG	24.04	23.69	24.05	22.51	21.45	22.85	21.41
CONVEX	19.13	19.92	18.41	17.08	21.52	21.6	20.63
MNIST SMALL	3.03	3.94	3.46	3.70	2.61	3.65	3.65
MNIST ROT	11.11	14.69	10.30	11.75	11.25	16.5	13.42
MNIST RAND	14.58	9.80	11.28	10.48	9.70	18.65	16.73
MNIST ROTIM	55.18	52.21	51.93	55.16	47.14	39.98	35.52

- Four dataset: Yeast, Scene, Mturk, Majmin
 - Yeast, Scene image labelling task
 - Mturk, Majmin music tagging task

- Four dataset: Yeast, Scene, Mturk, Majmin
 - Yeast, Scene image labelling task
 - Mturk, Majmin music tagging task

	# of dimension in X	# of dimension in Y
Yeast	103	14
Scene	294	6
Mturk	389	92
Majmin	389	96

- Four dataset: Yeast, Scene, Mturk, Majmin
 - Yeast, Scene image labelling task
 - Mturk, Majmin music tagging task

- 10 Folds
- 80 % training 10 % validation 10 % testing
- Model1 $GAES_{XY}$
- Model2 $GAES_{Y^2}$

Method	Yeast	Scene	MTurk	MajMin
LogReg	20.16	10.11	8.10	4.34
HashCRBM*	20.02	8.80	7.24	4.24
NeuralNet	19.79	8.99	7.13	4.23
$GAES_{XY}$	19.67	8.90	7.11	4.22
$GAES_{Y^2}$	19.76	8.90	7.13	4.22

Table 1: Error rate on multi-label datasets

Conclusion

- Showed that the GAE could be scored according to an energy function.
- Demonstrated the equivalency of the GAE energy to the free energy of RBM types of model.
- The main advantage of our suggested model is that optimization is fast by sorely taking gradient descent with respect to the Gated Auto-encoder scoring function. This leverage allows enormous eff ciency and the model's ability.

Questions??