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Preliminary : Gated Auto-encoders

● Unsupervised Learning
● Input X,Y -> Encode X|Y -> Decode -> reproduced X|Y

● Learns to relate X and Y. 

(Memisevic 2013)
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Poincare Integrability Criterion

● For some open set      , a continuously 
differentiable function                  defines a 
gradient field if and only if 

● Implication?

– The vector field is conservative field 

– The vector field is the gradient of scaler field
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● Consider our non-linear function     to be a 
sigmoid function

● This equation is same as  Free Energy of 
Factored Gated Restricted Boltzmann 
Machine with ignoring bias for simplicity
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Application: Structured Prediction

● Input X & Structured Output Y
● Predict Y with Neural Network, 

● Problem : each component of      is 
independently predicted by Neural Net!!



  

Application: Structured Prediction

● Remember our score function?

● Let's minimize the energy with respect to 



  

Application: Structured Prediction

● Neural Net gave good initialization of     . We 
fine-tune the structured prediction using our 
score function
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Application: Structured Prediction

● Model 1 – models relationship between x and y
● Model 2 -  models correlation between y itself



  

Experiments : Classification

● Deep Learning Benchmark Dataset
– Rectangle 

– Rectangle with background Image

– Convex 

– MNIST 

– Rotated MNIST 

– MNIST with Random Noisy Background

– MNIST with background Image

– Rotated MNIST with background Image
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Experiments : Classification

●  Solution: We adapt Gated softmax Classifier 

Algorithm:

1. Train an (denoised) mean covariance (gated) 
Auto-encoder for each class with tied weights and 
inputs.

– We have score for each class

2.  Train the mean-covariance Auto-encoder scoring 
coefficient 

(Memisevic 2011)
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Experiments: Structured Output

● Four dataset: Yeast, Scene, Mturk, Majmin
– Yeast, Scene – image labelling task

– Mturk, Majmin – music tagging task

# of dimension in X # of dimension in Y

Yeast 103 14

Scene 294 6

Mturk 389 92

Majmin 389 96



  

Experiments: Structured Output

● Four dataset: Yeast, Scene, Mturk, Majmin
– Yeast, Scene – image labelling task

– Mturk, Majmin – music tagging task



  

Experiments: Structured Output
● 10 Folds
● 80 % training  10 % validation 10 % testing
● Model1 - 
● Model2 - 



  

Conclusion

● Showed that the GAE could be scored according to an 
energy function.

● Demonstrated the equivalency of the GAE energy to the free 
energy of RBM types of model.

● The main advantage of our suggested model is that 
optimization is fast by sorely taking gradient descent with 
respect to the Gated Auto-encoder scoring function. This 
leverage allows enormous effi ciency and the model’s ability.



  

Questions??
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