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Abstract

This note was made after studying the Gaussian process (GP) using various resources. This is
written as a simple summary of the GP and should not to be used as a study guide. The code
for Gaussian process regression and classification are included.

1 Gaussian Distributions

Before diving into the Gaussian process, here are some of the properties about the Gaussian distribution,
which will be useful for understanding the Gaussian Process.

The Gaussian distribution is a continuous probability distribution that has a bell shape probability den-
sity function. The Gaussian distribution is described by the second order statistics, the mean and the
covariance,
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where µ is the mean and σ2 is the variance. For multivariate Guassian distributions,
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where x is the D dimensional data vector, µ is the mean vector, and Σ is the covariance matrix. The
moment and second moment of the Gaussian distribution is
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where z = x + µ.

One useful property of the Gaussian distribution is that the product of two Gaussian distributions is
Gaussian. Given two Gaussian random variable x1(t) and x2(t) with the mean and varaince corre-
sponding to µ1, µ2, σ2

1 and σ2
2 , the product of two random variables is x1(t)x2(t) ∼ N (µ, σ2) such
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Another very useful property is consistency, also known as the marginalization property. If the two
samples came from the Gaussian distribution such that (x1, x2) ∼ N(µ,Σ), then x1 ∼ N(µ1,Σ11)
where Σ11 is the relevant submatrix of Σ. In other words, if two sets of variables are jointly Gaussian,
the conditional distribution of one set conditioned on the other is Gaussian. Moreover, the mariginal
distribution of either set is also Gaussian as well. This gives us very handy tools for us to manipulate
and write the equations in terms of block matrices. Let us re-write the data x, mean µ, and covariance
matrix Σ to be

x =

(
xa

xb

)
, µ =

(
µa
µb

)
,Σ =

(
Σaa Σab
Σba Σbb

)
,Λ = Σ−1 =

(
Λaa Λab
Λba Λbb

)
where Λ is called the precision matrix.

Then we can re-write the mahalanobis distance of the Gaussian distribution as

(x− µ)TΣ−1(x− µ) = (xa − µa)TΛaa(xa − µa) + (xa − µa)TΛab(xb − µb)
+ (xb − µb)TΛba(xa − µa) + (xb − µb)TΛbb(xb − µb).

Using these partitioned form of matrices, we can define the marginal distribution and conditional distri-
bution as p(xa) = N (x|µa,Σaa) and p(xa|xb) = N (x|µa|b,Σa|b)

µa|b = µa + ΣabΣ
−1
bb (xb − µb) (5)

Σa|b = Σaa − ΣabΣ
−1
bb Σba (6)

2 The Gaussian Process

According to [1], the Guassian process is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution. The Gaussian process is entirely specified by its mean and
convariance as a function of the input.

m(x) = E[f(x)] (7)

k(x,x
′
) = E[f(x−m(x))(f(x

′
)−m(x

′
))] (8)

The prior of the Gaussian process is a distribution over the function space. In practice, we do not much
have the prior knowledge about the mean of f(x), so we set the mean to be zero, E[f(x)] = 0.

The Gaussian process can be viewed as a kernel method and it can be related to different machine
learning techniques such as the radial basis function, ridge regression, and Bayesian linear regression.
As many textbook introduced the Gaussian process starting from the Bayesian linear regression, we can
see the relationship between the two. Suppose y(x) = Φ(x)TW and W ∼ N (0,Σp) where Φ is the
function that maps the D-dimensional input vector to M -dimensional feature space. Then, the second
order statistics are

E[y(x)] = ΦE(y(x)) = 0 (9)

E[y(x)y(xT )] = ΦE[WWT ]ΦT = ΦΣpΦ
T (10)

From this derivation, we can see that y(x) is Gaussian that has a zero mean and covariance ΦΣpΦ
T .

Hence, this is a particular example of the Gaussian process.

The reason why the Gaussian process is a kernel method is because we specify the covariance function
k(x,x

′
) to be a kernel function. For example, we can set covariance function to be
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′
) = xx

′
(11)

Linear Exponential: k(x,x
′
) = exp

(
−1

2
|x− x

′
|
)

(12)

Squared Exponential: k(x,x
′
) = exp

(
−1

2
‖x− x

′
‖2
)
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The choice of the kernel function depends on the user and the user decide the smoothness of the function.

We can now easily sample a function with the zero mean and a covariance function k(x,x
′
)

f∗ ∼ N (0, k(x∗,x∗))

where x∗ are samples. One thing about the Gaussian processes is that the formulation itself is not
that hard, but the concept of function-space view could be little bit overwhelming at first. This is
because even though we say that we have a prior distribution over the function space, we only considered
functions at the points that we have in our dataset, but I just embraced it.

3 Gaussian Process Regression

Until now, we only talked about drawing a sample function based on our prior knowledge. Here, we
incorporate the dataset to predict the function and unseened points x∗. Suppose we have the noise-free
dataset such that {(xi, fi)|∀i = 1 · · ·n)} and we like to sample functions at points {x∗j |∀j = 1 · · ·m}.
In order to sample, we have to define a joint distribution based on the discussion from the above.[

f
f∗

]
∼ N

(
0,

[
k(X,X) k(X,x∗)
k(x∗, X) k(x∗,x∗)

])
We can predict f∗ at x∗ conditioning on our observation (X, f), we will use the conditional Gaussian
probability from Equation 5. Then we get,

f∗|x∗, X, f∗ ∼ N
(
k(x∗, X)k(X,X)−1f , k(x∗,x∗)− k(x∗, X)k(X,X)−1k(X,x∗)

)
.

Now we will repeat the same process but assume that there is noise in our dataset and we will also
assume that the noise is indepedent of the data distribution. Let’s define the dataset to be {(xi, yi)|∀i =
1 · · ·n)}. We use y instead of f because it is not a true function anymore due to the noise, i.e y =
f(x) + ε, ε N (0, δ). Then, the joint distribution of (y, f∗) is[

y
f∗

]
∼ N

(
0,

[
k(X,X) + δ2I k(X,x∗)
k(x∗, X) k(x∗,x∗)

])
Similarly, the conditional distribution becomes

f∗|x∗, X,y∗ ∼ N
(
k(x∗, X)

[
k(X,X)−1 + δ2I

]−1
y, k(x∗,x∗)− k(x∗, X)

[
k(X,X) + δ2I

]−1
k(X,x∗)

)
.

One of the reasons why we say that the radial basis kernel method is a special case of the Gaussian
process is because we can reformulate the mean of f∗ to be

f̄∗ = k(x∗, X)
[
k(X,X)−1 + δ2I

]−1
y =

n∑
i=1

αik(xi,x
∗)

where αi =
[
k(X,X)−1 + δ2I

]−1
y. Now if our kernel function is a squared exponential function,

then it becomes a radial basis kernel formulae

f̄∗ =

n∑
i=1

αi exp

(
−1

2
‖xi − x∗‖2

)
.

Lastly, we will talk about marginal likelihood p(y|x), which is an integral of the likelihood and prior,

p(y|X) =

∫
p(y|f , X)p(f |X)df

The prior of f |X ∼ N (0, k(X,X)) is Gaussian and the likelihood y|f ∼ N (f , δ2I) is Gaussian so
p(y|X) is Gaussian as shown in Equation 3. Then, log of p(y|X) is

log p(y|X) = −1

2
yT
(
k(X,X) + δ2I

)
y − 1

2
log |k(X,X) + δ2I| − n

2
log 2π.
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4 Gaussian Process Classification

When we do classification with the Gaussian process, where the predictions take the form of discrete
values (class labels), we cannot use the likelihood function as the Gaussian distribution as for the re-
gression problem. This means that we cannot make use of the conjugate-prior to the classification.
Thus, both the GP regression and classification are function approximators but this makes the Gaussian
process classification to be more challenging than the regression.

Suppose that (xi, yi) are the data and label for all i = 1, · · · , n and (x∗) is the data point that we want
to predict. Then, the conditional probability of f∗ becomes

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(f |X,y)df (14)

which is very similar to the regression except that we incorporate the labels y. Plus, the probability
prediction based on f∗ becomes

p(y∗ = 1|X,y,x∗) =

∫
p(y = 1|x∗, f∗))p(f∗|X,y,x∗)df∗ (15)

As mentioned, p(y = 1|f∗(x)) is typically some regression function within a range between [0, 1]. Also
note that p(f |X,y) and p(y = 1|f∗(x)) are non-gaussian functions.

The marginal probability p(y|x) is expressed as

p(y|X) =

∫
p(y|f)p(f |X)df =

∫
exp (Φ(f)) df

In order to compute the probability for each class p(y|f) we choose the probability function in the range
of [0, 1]. In practice, we use

Linear regression: p(y|f) =
1

1 + exp (−f))

Probit regression: p(y|f) =

∫ f

−∞
N (x|0, 1)dx

The difficulties in the Gaussian process classification comes from Equation 14 and Equation 15, because
we cannot analytically compute the integral. Two ways to approximate the integral: by using the Laplace
approximation and the expectation propagation.

4.1 Laplace Approximation

Since p(f |X,y) is non-Gaussian, the Laplace approximation method tries to approximate p(f |X,y)
using the Gaussian function q(f |X,y). This can be done by approximating the second order Taylor
expansion of log p(f |X,y) around the maximum of the posterior f̂

q(f |X,y) = N (f |̂f , A−1)

where A = −∇∇ log p(f |X,y) at f̂ . The maximum of the posterior of f̂ can be found using Newton’s
iteration method. Details can be found in [2]. Similarly, we approximate the marginal probability
p(y|X) by approximating with Gaussian distribution. Then the marginal probability in Equation 4
becomes:

p(y|X) ' q(y|X) = exp
(

Φ(f̂)
)∫

exp

(
−1

2
(f − f̂)TA(f − f̂)df

)
Then, the approximated log likeliehood of marginal probability becomes

log q(y|X) = (−1

2
(f − f̂)TA(f − f̂)) + log p(y|̂f)− 1

2
log |B|

where B = I +W
1
2KW

1
2 , W = −∇∇p(y|f) and K is covariance matrix for p(f |X).

4



References

[1] Christopher M. Bishop, Pattern Recognition and Machine learning, Springer-Verlag New York.

[2] Carl Edward and Christopher K. I. Williams, Gaussian Proecsses for Machine learning, The MIT
Press, CAmbridge, Massachusetts.

5


	Gaussian Distributions
	The Gaussian Process
	Gaussian Process Regression
	Gaussian Process Classification
	Laplace Approximation


