

UNDERSTANDING MINIMUM PROBABILITY FLOW LEARNING FOR RBMS UNDER VARIOUS KINDS OF DYNAMICS

DANIEL JIWOONG IM, ETHAN BUCHMAN, AND GRAHAM W. TAYLOR

INTRODUCTION

- We investigate the performance of Minimum Probability Flow (MPF) learning for training RBMs.
- Unlike CD, with its focus on approximating an intractable partition function via Gibbs sampling, MPF proposes a tractable, consistent, objective function defined in terms of a Taylor expansion of the KL divergence with respect to sampling dynamics.
- We propose a more general form for the sampling dynamics in MPF, and explore the consequences of different choices for these dynamics for training RBMs.

DYNAMICS OF THE MODEL

The key intuition behind MPF is that we introduce explicit dynamics over the model, yielding an equilibrium distribution as a function of dynamics.

For example, the initial states will evolve over time towards the states under some dynamics.

Using the Master equation,

$$\dot{p}_i = \sum_{j \neq i} [\Gamma_{ij} p_j^{(t)} - \Gamma_{ji} p_i^{(t)}]$$
(5)

where Γ_{ij} is the probability flow rate from state j to state *i*, to describe above phenomenon with the assumptions of :

- Continuous time Markov chain,
- Converges to equilibrium state.

Approximating $J(\theta)$ up to a first order Taylor expansion with respect to time t,

where we want Γ to satisfy detailed balance,

MINIMUM PROBABILITY FLOW

The objective of MPF is to minimize the KL divergence between the data distribution and the distribution after evolving an infinitesimal amount of time ϵ under the dynamics.

$$\theta_{\text{MPF}} = \operatorname{argmin}_{\theta} J(\theta), \ J(\theta) = D_{KL}(p^{(0)}||p^{(\epsilon)}(\theta))$$

$$J(\theta) = \frac{\epsilon}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} \sum_{i \notin \mathcal{D}} \Gamma_{ij}$$
(1)

$$\Gamma_{ji} p_i^{(\infty)}(\theta) = \Gamma_{ij} p_j^{(\infty)}(\theta).$$
(2)

One way is to choose Γ to be

$$\Gamma_{ij} = g_{ij} \exp\left(\frac{1}{2}(F_j(\theta) - F_i(\theta))\right).$$
(3)

where g_{ij} is the connectivity between state j and i. Choosing sparse $g_{ij} \forall i, j$ allows faster computation!

PROBABILITY FLOW RATES

Here are different probability flow matrix dynamics, we explore:

1. **One-bit flip** - data states are connected to all other states 1-bit flip away:

$$g_{ij} = \begin{cases} 1, & \text{if state } i, j \text{ differs by single bit flip} \\ 0, & \text{otherwise} \end{cases}$$
(4)

2. Factored MPF - use a probability distribution, such that g_{ij} is the probability that state j is connected to state i. $J(\theta) =$ $J_{\mathcal{D}}(\theta) J_{\mathcal{S}}(\theta)$

$$J_{\mathcal{D}}(\theta) = \left(\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \exp\left[\frac{1}{2} \left(F(\mathbf{x}; \theta) - F(\mathbf{x}; \theta^{n-1})\right)\right]\right);$$

$$J_{\mathcal{S}}(\theta) = \left(\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}' \in \mathcal{S}} \exp\left[\frac{1}{2} \left(-F(\mathbf{x}'; \theta) + F(\mathbf{x}'; \theta^{n-1})\right)\right]\right)$$

3. Persistent MPF - Applied persistent sampling in MPF connectivity functions.

MNIST - small models, exact log likelihood compu

MNIST - larger models, log likelihood estimates

Table 3: Experimental results on Caltech-101 Silhouettes us ing 11 RBMs with 500 hidden units each. The average estimated training and test log-probabilities over 10 repeated runs with random parameter initializations are reported.

REFERENCE

Sohl-Dickstein, Jascha, Battaglino, Peter, and DeWeese, Michael R. Minimum probability flow learning. In Proceedings of the International Conference of Machine Learning (ICML), 2011 Code: https://github.com/jiwoongim/minimum_probability_flow_learning

UNIVERSITY OF GUELPH, SCHOOL OF ENGINEERING

EXPERIMENTS

ΓA	A PCD			MPF-1flip			CD10		FMPF10			PMPF10							
-1	1	3	¥.	ž.	the second		Real Property	1		× *			ŝ	14	in the second		1000	4	1
١	3	1. Q.		r R		, the second	Š.		Į.					*	÷.		1	7	
3	حک				. Ŷ	特读	4	e e e e		1	×.	interio,	-		÷	1			
l	7	3 de		1 ~}	1	4- ¹⁴			÷		2	ţ.	с ў	الإدمنية	7	ų,		I.c.	e e
L5		FMP	F15		PM	PF15			CD	25			FMF	PF25			PMP	F25	
6	Ş.			t.	Ċ		1	273) Æ				4			,		ŝ	2	×.
$\tau_{i}^{(1)}(\tau)$	ţ, tê			3 ×			ίw,	4			4 4 4	4.200		÷				¥.**	, L
ŝ		194 194				<u>.</u>			à. 8	ê. T	4		* .#			(instance)			
1.94	-		1. A.			é		M .	9. CH	No.	7		ALL PARTY	1	1			¥., 1955.	1

Table 1: Experimental results on MNIST using 11 RBMs with 20 hidden units each. The average training and test logprobabilities over 10 repeated runs with random parameter initializations are reported.

Table 2: Experimental results on MNIST using 11 RBMs with

 200 hidden units each. The average estimated training and test log-probabilities over 10 repeated runs with random parameter initializations are reported. Likelihood estimates are made with CSL and AIS.

Caltech-101 - largest models, log likelihood estimates

ΓA	PCD1	MPF 1-bit flip	CD10	FMPF10	PMPF10
59	***		HO 12.48	4P/30/	493X.44
- X -	* { • # <i>{</i> ~ 4	•/•4/4	• * • • * •		• • • • • • •
赠◀¥	//•+4+	// •••	1	//	114444
549		40>/40	403140		. (0) 5 4 9
	} * * * * * *		* + 2 0 * *	F # 40 + 4	* / * O ÷ *
	5-+++++	\$4:-0-/	6144.4	5 4440 +	2 + 4 4 4 4
L5	FMPF15	PMPF15	CD25	FMPF25	PMPF25
.	*** 2 4 4 4	{/)]}}\$	()).(*** 2 4 4 4	*>40+5
	• * • * / 4	••••			• < + 4 * 4
F 4 ×	17044×	/***	//•***	//•++*	/ 10+#*
* 4 #		-{=> . ~ .	403149		
D E		// 20× 1	***		? / 20+4
8 * ¢	6 - t 0 - t		6 * * 4 *	5 - 1 0 - (

Ita	ation			
	Method	Average log Test	Average log Train	Time (sec)
•	CD1	-145.63 ± 1.30	-146.62 ± 1.72	831
	PCD	-136.10 \pm 1.21	-137.13 \pm 1.21	2620
	MPF-1flip	-141.13 ± 2.01	-143.02 ± 3.96	2931
•	CD10	-135.40 ± 1.21	-136.46 ± 1.18	17329
	FMPF10	-136.37 ± 0.17	-137.35 ± 0.19	12533
	PMPF10	-141.36 ± 0.35	-142.73 ± 0.35	11445
	FPMPF10	-134.04 \pm 0.12	-135.25 \pm 0.11	22201
•	CD15	-134.13 ± 0.82	-135.20 ± 0.84	26723
	FMPF15	-135.89 ± 0.19	-136.93 ± 0.18	18951
	PMPF15	-138.53 ± 0.23	-139.71 ± 0.23	13441
	FPMPF15	-133.90 \pm 0.14	-135.13 \pm 0.14	27302
	CD25	-133.02 ± 0.08	-134.15 ± 0.08	46711
	FMPF25	-134.50 ± 0.08	-135.63 ± 0.07	25588
	PMPF25	-135.95 ± 0.13	-137.29 ± 0.13	23115
	FPMPF25	-132.74 \pm 0.13	-133.50 \pm 0.11	50117

	CSL	AIS	
Method	Avg. log Test	Avg. log Test	Time (sec)
CD1	-138.63 ± 0.48	-98.75 ± 0.66	1258
PCD1	-114.14 \pm 0.26	-88.82 \pm 0.53	2614
MPF-1flip	-179.73 ± 0.085	-141.95 ± 0.23	4575
CD10	-117.74 ± 0.14	-91.94 ± 0.42	24948
FMPF10	-115.11 ± 0.09	-91.21 ± 0.17	24849
PMPF10	-114.00 ± 0.08	-89.26 ± 0.13	24179
FPMPF10	-112.45 \pm 0.03	-83.83 \pm 0.23	24354
CD15	-115.96 ± 0.12	-91.32 ± 0.24	39003
FMPF15	-114.05 ± 0.05	-90.72 ± 0.18	26059
PMPF15	-114.02 ± 0.11	-89.25 ± 0.17	26272
FPMPF15	-112.58 \pm 0.03	-83.27 \pm 0.15	26900
CD25	-114.50 ± 0.10	-91.36 ± 0.26	55688
FMPF25	-113.07 ± 0.06	-90.43 ± 0.28	40047
PMPF25	-113.70 ± 0.04	-89.21 ± 0.14	52638
FPMPF25	-112.38 \pm 0.02	-83.25 \pm 0.27	53379

	CSL	AIS	
Method	Avg. log Test	Avg. log Test	Time (sec)
CD1	-251.30 ± 1.80	-141.87 ± 8.80	300
PCD1	-199.89 \pm 1.53	-124.56 \pm 0.24	784
MPF-1flip	-281.55 ± 1.68	-164.96 ± 0.23	505
CD10	-207.77 ± 0.92	-128.17 ± 0.20	4223
FMPF10	-211.30 ± 0.84	-135.59 ± 0.16	2698
PMPF10	-203.13 ± 0.12	-128.85 ± 0.15	7610
FPMPF10	-200.36 \pm 0.16	-123.35 \pm 0.16	11973
CD15	-205.12 ± 0.87	-125.08 ± 0.24	6611
FMPF15	-210.66 ± 0.24	-130.28 ± 0.14	3297
PMPF15	-201.47 ± 0.13	-127.09 ± 0.10	9603
20			
FPMPF15	-198.59 \pm 0.17	-122.33 \pm 0.13	18170
CD25	-201.56 ± 0.11	-124.80 ± 0.20	13745
FMPF25	-206.93 ± 0.13	-129.96 ± 0.07	10542
PMPF25	-199.53 ± 0.11	-127.81 ± 020	18550
FPMPF25	-198.39 \pm 0.0.16	-122.75 \pm 0.13	23998