
Analyzing Unsupervised
Representation Learning Models
Under the View of Dynamical

Systems

by

Daniel Jiwoong Im

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

School of Engineering
University of Guelph

Copyright c© 2014 by Daniel Jiwoong Im

Abstract

Analyzing Unsupervised Representation Learning

Models Under the View of Dynamical Systems

Daniel Jiwoong Im

Master of Applied Science

School of Engineering

University of Guelph, 2015

The focus of this thesis is on unsupervised learning algorithms, particularly

from the perspective of representation learning. The two main unsupervised

learning methods that we work with are restricted Boltzmann machines and

auto-encoders. Both algorithms are acknowledged to capture meaningful

representations of the data, in which they learn to represent the higher-level

abstractions of the data. In this thesis, the background on unsupervised

learning and the two algorithms are thoroughly discussed using details of

mathematical formulations.

The objective of this thesis is to take the dynamical systems approach

to understand and develop the unsupervised learning models and learning

algorithms through the lens of dynamical systems.

Auto-encoders are perhaps the best-known non-probabilistic methods for

representation learning. They are conceptually simple and easy to train.

Recent theoretical work has shed light on their ability to capture manifold

structure, and drawn connections to density modeling. This has motivated

researchers to seek ways of auto-encoder scoring, which has furthered their

use in classification. Gated auto-encoders (GAEs) are an interesting and

flexible extension of auto-encoders which can learn transformations among

different images or pixel covariances within images. However, they have

been much less studied, theoretically or empirically. For the first part of

our study, we examine the GAEs’s ability to represent different functions or

data distributions. We apply a dynamical systems view to GAEs, deriving a

scoring function, and drawing connections to RBMs. On a set of deep learning

ii

iii

benchmarks, we also demonstrate their effectiveness for single and multi-label

classification.

Energy-based models are popular in machine learning due to the elegance

of their formulation and their relationship to statistical physics. Among these,

the restricted Boltzmann machine (RBM), and its staple training algorithm

contrastive divergence (CD), have been the prototype for some recent advance-

ments in the unsupervised training of deep neural networks. However, CD has

limited theoretical motivation, and can, in some cases, produce undesirable

behavior. In the second part of our study, we investigate the performance of

Minimum Probability Flow (MPF) learning for training RBMs. Unlike CD,

with its focus on approximating an intractable partition function via Gibbs

sampling, MPF proposes a tractable, consistent, objective function defined in

terms of a Taylor expansion of the KL divergence with respect to sampling

dynamics. We propose a more general form for the sampling dynamics in

MPF, and explore the consequences of different choices for these dynamics

for training RBMs. Experimental results show MPF outperforming CD for

various RBM configurations.

Contents

Abstract iv

1 Introduction 1

2 Background & Related work 5

2.1 Auto-encoders . 7

2.2 Restricted Boltzmann Machines 10

2.2.1 Gaussian-Bernoulli Restricted Boltzmann Machines . . . 12

2.2.2 Training Restricted Boltzmann Machines 13

2.3 Higher-order Generative Models 15

2.3.1 Gated Auto-encoders . 15

2.3.2 Mean Covariance Auto-encoders 17

2.3.3 Factored Gated Restricted Boltzmann Machines 18

2.3.4 Mean-Covariance Restricted Boltzmann Machines 20

3 Analyzing Dynamics on Families of Auto-encoders 23

3.1 Gated Auto-Encoder Scoring . 24

3.1.1 Vector field representation 24

3.1.2 Scoring the GAE . 25

3.2 Relationship to Restricted Boltzmann Machines 26

3.2.1 Gated Auto-encoder and Factored Gated Conditional

Restricted Boltzmann Machines 27

3.2.2 Mean-Covariance Auto-encoder and Mean-covariance

Restricted Boltzmann Machines 27

iv

Contents v

3.3 Classification with Gated Auto-encoders 28

3.3.1 Classification using class-specific gated auto-encoders . 29

3.3.2 Multi-label classification via optimization in label space 30

3.4 Discussion . 35

4 Training Energy-based Models Under Various Kinds of Dynamics 36

4.1 Minimum Probabilty Flow . 37

4.1.1 Dynamics of the Model 38

4.1.2 Form of the Transition Matrix 39

4.2 Probability Flow Rates Γ . 40

4.2.1 1-bit flip connections . 40

4.2.2 Factorized Minimum Probability Flow 41

4.2.3 Persistent Minimum Probability Flow 42

4.3 Experiments . 43

4.3.1 MNIST - exact log likelihood 44

4.3.2 MNIST - estimating log likelihood 45

4.3.3 Caltech 101 Silhouettes - estimating log likelihood . . . 47

4.4 Discussion . 48

5 Summary 50

References 52

A Background & Related Work 57

A.1 Auto-encoders . 57

A.2 Restricted Boltzmann Machines 58

B Analyzing Dynamics on Families of Auto-encoders 59

B.1 Gated Auto-Encoder Scoring . 59

B.1.1 Vector field representation 59

B.1.2 Deriving an Energy Function 60

B.2 Relation to other types of Restricted Boltzmann Machines . . . 61

B.2.1 Gated Auto-encoder and Factored Gated Conditional

Restricted Boltzmann Machines 61

B.2.2 Mean-covariance Auto-encoder and mean-covariance

Restricted Boltzmann Machines 63

vi Contents

C Training Energy-based Models Under the Various Kinds of Dynam-

ics 65

C.1 Minimum Probability Flow . 65

C.1.1 Dynamics of The Model 65

Acknowledgments

I would like to thank my supervisor Dr. Graham Taylor. Graham is an

excellent supervisor. Comparing myself in September 2013, which was when

I first started the Master’s program at University of Guelph, to now, I gained

tremenduous knowledge in machine learning and wisdom as a researcher.

This is all thanks to Graham.

I also would like to thank my thesis committee member, Dr. Medhat

Moussa. Professor Moussa and I had numerous meetings since I first joined

University of Guelph, and he always gave me fruitful advices.

I wish to thank all my colleagues and friends in the Machine learning lab at

University of Guelph. Jan Rudy, Ammar Abuleil, Ethan Buchman and I started

our Master’s program at the same time and they gave me great support. I also

want to thank Gavin Ding, Tomas Sixta, and Carolyn Augusta for many careful

proofreads over my papers and provided valuable suggestions. I would like to

acknowledge Dinesh Ramdhayan, who is the leader of University of Toronto

Go Club. He proofread chapter 2 of this thesis.

Lastly, I would like to thank my parents, my grandmother and sister for

all their support and love.

vii

Publications

Publications that are related to this thesis

Daniel Jiwoong Im, and Graham W. Taylor, Scoring and Classifying with

Gated Auto-encoders, http://arxiv.org/pdf/1412.6610v3.pdf.

Under review at European Conference of Machine Learning (ECML)

Daniel Jiwoong Im, Ethan Buchman, and Graham W. Taylor, An Empirical

Investigation of Minimum Probability Flow Learning Under Different

Connectivity Patterns.

Under review at European Conference of Machine Learning (ECML)

Daniel Jiwoong Im, Ethan Buchman, and Graham W. Taylor, Understanding

Minimum Probability Flow for RBMs Under Various Kinds of Dynamics,

http://arxiv.org/pdf/1412.6617v4.pdf.

International Conference of Learning Representations (ICLR) workshop

Daniel Jiwoong Im, and Graham W. Taylor, Analyzing the Dynamics of

Gated Auto-encoders, In Neural Information Processing Systems Deep

Learning Workshop. 2014

Publications that are not related to this thesis

Daniel Jiwoong Im, and Graham W. Taylor, Learning a metric for class-

conditional KNN

Under review at International Joint Conference on Artifical Intelligence

(IJCAI)

viii

Contents ix

Daniel Jiwoong Im, and Graham W. Taylor, Semi-supervised Hyperspectral

Image Classification via Neighborhood Graph Learning

IEEE Geoscience and Remote Sensing Letters (GSL)

Daniel Jiwoong Im, and Graham W. Taylor Improving semi-supervised

neural networks for scene understanding by learning the neighborhood

graph In Computer Vision and Pattern Recognition Scene Understanding

Workshop. 2014

Notation

Scalar quantities are denoted by lower-case letters, such as x. Vector

quantities are denoted by bold lower-case letters, such as x. Matrices are

denoted by upper-case letters, such as W.

Individual elements of vectors and matrices use subscripts, such as xi

and Wij.

Occasionally we use the same letter to denote different, but related,

vectors or matrices. We use superscripts to distinguish them, as in Wv

and Wh.

N (µ, Σ) is a Gaussian distribution with mean µ and covariance Σ and

Ep∗ is an expectation with respect to distribution p∗. We also use the

shorthand notation 〈·〉p∗ to denote an expectation.

x

1 Introduction

Computers and humans have very opposite strengths. Computers are

precise, accurate, and fast at computing arithmatic and logic, whereas humans

can understand and perceive things much better than computers can. For

example, a computer can approximate π upto 12.1 trillion digits. On the

other hand, humans naturally recognize the perceivable objects and generalize

newly seen objects. The goal of machine learning is to solve problems by

recognizing patterns and extracting meaningful features from the data based

on studying learning mechanisms as humans naturally learn to perceive and

recognize things.

After the 2012 breakthrough of deep convolutional neural networks on the

Imagenet competition (Krizhevsky et al., 2012), the popularity of deep neural

networks has suddenly given rise to many other successes. For example,

winning the competitions on predicting the activity of potential drugs or

predicting job salaries from job advertisements demonstrated the success of

neural networks.

Artificial neural network (ANN) is one of the branches in machine learning

that is inspired from the architecture of the brain. ANNs are composed

of interconnected artificial neurons called “units”, which serve as model

neurons. The function of the synapse in the brain is modeled by the modifiable

weights, which are associated with each connection (Rumelhart et al., 1986;

Hinton, 1992). Typically, machine learning researchers abuse the name and

call it simply “the neural network”, and we will follow the same convention

throughout the thesis.

The neural network itself has been proven to be “a universal approximator”

1

2 Introduction

(Csáji, 2001). In other words, with enough data and the artificial neurons, it

can model any kind of continuous function. In fact, we can add more units

by adding more layers of artificial neurons to a neural network. This has

been empirically shown to be effective and powerful (Bengio et al., 2013a).

Nevertheless, the crucial component of the algorithms is in the process of

learning. The learning processes are usually viewed as a ‘black art’ to non-

scientists. However, the black art is basically the organization of several layers

of artificial neurons in order for such networks to train from the data by

being able to recognize patterns, features, and coherence in the data. Machine

learning scientists dubbed the name “deep learning” to the idea described

above, but more specifically, to the idea of modelling high-level abstractions

of data using multiple layers of artificial neurons.

Humans constantly have to process enormous inputs that are obtained

through our sensory receptors, and one of the processes is learning (Spitzer,

2006). Humans can either learn from someone’s guidance or by themselves.

However, human brains spend most of the time learning on our own without

the awareness of a learning process. Akin to human learning, machines can

be taught supervisedly and unsupervisedly. In fact, many machine learning

researchers, including myself, believe that machines can learn much more

efficiently through unsupervised learning if we manage to find the proper

unsupervised learning mechanisms. This is because humans obtain a lot more

unlabeled data than labeled data† and derive many insights and structures

from those data. As an example, Google brain has experimented with a

massive amount of Youtube data with huge processing power, and shown

that the network learned to perceive what a lot of Google users perceived (Le

et al., 2011).

Two current well-known unsupervised learning algorithms are restricted

Boltzmann machines and auto-encoders. Both algorithms are acknowledged

to capture meaningful representations of the data, in which they learn the

higher-level abstractions of the data that are more meaningful than the original

data. For example, representing the image by abstract concepts, such as sets

of edges, texture, and shapes, is much more meaningful than pixel intensities.

†Unlabeled data refers to data that are obtained with no guidance and labeled data refers to

the data that are guided. For example, the photo of an apple with the label “apple” is labeled

data and without label “apple” would be unlabeled data

Introduction 3

Also, having a good representation makes the given task easier to accomplish.

This is first demonstrated by Hinton et al. (2006) through a technique called

“unsupervised pre-training”. The philosophy behind “unsupervised pre-

training” is that the network learns to figure out the structures and patterns

from the data itself and the human only gets involved in the latter stage to

label the outputs.

The focus of this thesis is on unsupervised learning algorithms, particularly

within the subject of representation learning. In this thesis, the background

on unsupervised learning and the two algorithms are thoroughly discussed

using details of mathematical formulations. The background includes works

related to my research and are rudimentary to understanding the work we

present. These are presented in chapter 2.

The objective of this thesis is to take the dynamical systems approach

to understand and develop the unsupervised learning models and learning

algorithms through the lens of dynamical systems.

In chapter 3, we analyze the dynamics of various types of auto-encoders,

such as gated auto-encoders and mean-covariance auto-encoders. We demon-

strate that these auto-encoders can be scored similarly to classical auto-

encoders by computing the potential energy required for running their trajec-

tories. We also reveal the relationnship between auto-encoders and restricted

Boltzmann machines through the scope of its potential energy function. Fi-

nally, we present an elegant technique to leverage the scoring of families of

auto-encoders for multi-labeled classification.

In chapter 4, we expound on minimum probability flow learning under

various dynamical systems and leverage it to train restricted Boltzmann

machines. The beauty of this algorithm is that it does not require computing

or approximating the partition function on any energy-based model. The

minimum probability flow learning algorithm requires a dynamical system,

which guarantees that the model will converge to its stationary states after

evolving over some amount of time. We derive a more general form of the

transition matrix that satisfies detailed balance. We also experiment with

various dynamics such as single bit flip, factored MPF, and persistent MPF on

restricted Boltzmann machines.

More concisely, chapter 3 construe the models’ abilities to represent dif-

ferent functions or data distributions; while, chapter 3 explores the learning

4 Introduction

algorithm which allows the model to approximate or capture the data distri-

butions. Both aspects are very important since we need to understand what

the model is capable of modelling, and we need to make sure we have the

ability to make full use of models’ capabilities by exploring various learning

strategies. Additionally, despite the fact that we took a dynamical systems ap-

proach to chapter 3 and chapter 4, the dynamical systems in two chapters are

quite different from one and another. In chapter 3, we consider the dynamics

induced by repeatedly applying the reconstruction function of an autoencoder.

The dynamics are characterized by a vector field which represents the linear

transformation that occurs when the reconstruction function is applied to

data. On the other hand, in chapter 3, we consider the dynamics induced by

a Markov Chain which transitions among the states of a generative model.

The dynamics are characterized by probability flow in and out of these states.

Therefore, the main contribution of this thesis are understanding higher-order

auto-encoders in terms of their potential energy functions, and exploring the

alternative learning method for RBMs as opposed to the contrastive divergence

learning procedure.

2 Background & Related work

Unsupervised learning is a type of machine learning approach that tries

to reveal the hidden structure of data sets. Unsupervised learning only uses

unlabeled data points to learn a function f : X → H that maps x to a new

representation h. This contrasts with supervised learning, which takes labeled

data points (x, y) to model a function f (x) = y or a probability distribution

p(x, y) where x is the data and y is the label. There are several aims of

unsupervised learning as the term “hidden structure” can cover a number

of broad aspects. For example, one of the goals of unsupervised learning

is to find sensible clusters of the data points. Another goal could be to

provide a compact, low-dimensional representation of the input, or to find an

economical high-dimensional representation such as binary features. As this

thesis focuses on deep learning algorithms, the aim of unsupervised learning

from a deep learning perspective is to build an internal representation of

the input that is useful for subsequent supervised or reinforcement learning

approaches. This is often called unsupervised feature learning (Bengio et al.,

2013a).

Researchers have advocated undsupervised learning for another learning

system. Most famously, Hinton et al. (2006) introduced a greedy layerwise

unsupervised learning algorithm. The idea behind this greedy layer-by-layer

training procedure is to learn hierarchical features one level at a time using an

unsupervised learning model called a Restricted Boltzmann Machine (RBM).

The training procedure attempts to learn new features† using RBMs based on

†We use the term features and representations interchangeably.

5

6 Background & Related work

the features learned by an RBM from the previous layer. The greedy layer-by-

layer training procedure is shown in Figure 2.1. This resulting architecture is

called Deep Belief Network (DBN).

…

…

…

…

RBM

h3

h2

h1

x

Figure 2.1. Greedy Layer-by-layer training using the restricted Boltzmann

machine is shown. This is also known as 3-layer Deep Belief Network

This idea of employing a unsupervised learning algorithm to pre-train

features before applying supervised training has been championed by a large

number of published works (Hinton et al., 2006; Bengio et al., 2007; Hinton,

2007; Vincent et al., 2008; Dahl et al., 2010; Mohamed and Hinton, 2010). Since

then, many of the new unsupervised learning algorithms have been developed

by deep learning researchers such as Denoising Auto-encoders, Constractive

Auto-encoders, and deep Boltzmann machines (Vincent et al., 2008; Rifai et al.,

2011; Salakhutdinov and Hinton, 2009; Bengio et al., 2014).

In general, unsupervised learning algorithms from a deep learning per-

spective can be segregated into deterministic and probabilistic models. De-

terministic models have outcomes that are precisely determined by the data.

Thus, the function is many-to-one. On the other hand, probabilistic models

have distributions over the the possible outcomes, so they can represent un-

certainty. In this chapter, we will go over the models that are good examples

of deterministic and probabilistic models.

Auto-encoders 7

2.1 Auto-encoders

The most successful and well-known example of a deterministic unsuper-

vised learning method is an auto-encoder. They are conceptually simple and

easy to train through the back-propagation algorithm. The encoder of the

auto-encoder learns an efficient representations of the data and the decoder

learns to reconstruct the original data. Typically, the encoding function is a

non-linear function such that

h = f (x) = f (Wx + b) (2.1)

and the decoding function can be also non-linear but we will focus linear

decoding function in this thesis unless the data is binary,

x̃ = g(h) = Rh + c (2.2)

where the function f is a non-linear function such as a sigmoid function or

rectified linear function, and θ = {W, R, b, c} are the parameters of the model.

In the case of binary data, the decoding function uses a sigmoid function to

limit/bound the output to 0 and 1. Additionally, the weights of the encoder

and decoder are often tied such that R = WT . For convenience, we will

present the operation of the auto-encoder as a single reconstruction function,

r(x) = g(f (x)) = x̃.

The architecture of the auto-encoder is depicted in Figure 2.2

We can easily extend the auto-encoder to multiple layers by stacking the

hidden layers. This is known as a deep auto-encoder. The encoder and

decoder are then expressed as

h(l) = f (h(l−1)) = f (W(l)h(l−1) + b(l)) (2.3)

g(k) = f (h(k−1)) = f (R(k)h(k−1) + c(k)) (2.4)

where l and k are the indices for layer l and layer k†, and the first layer refers

to the data such that h(0) = x. Throughout the paper, we will describe the

1-layer version of the auto-encoder, but they can be generalized to deeper

layers of an auto-encoder.

†Often in practice, the decoder is constructed so that it mirrors the encoder.

8 Background & Related work

…

… h

x

… x~

Decoder

EncoderW

R

Figure 2.2. The auto-encoder is presented as a feedforward network graph.

The encoder and decoder mirror each other with respect to the hidden layer h

in the network.

Depending on the type of the data, whether it is binary or real values,

the error function becomes either the mean squared or cross entropy error

function,

L(x, x̃) =
M

∑
j=0

(xj − x̃j)
2 (2.5)

L(x, x̃) =
M

∑
j=0

xj log x̃j + (1− xj) log x̃j (2.6)

where M is the dimensionality of the data. In practice, we use an expected

squared error function

E [L(x, x̃)] =
1
N

N

∑
i

L(xi, x̃i) (2.7)

where N is the number of the data points. This is more convenient to compare

the error values between different models.

Various regularized variants of auto-encoders have been proposed (Vincent

et al., 2008; Rifai et al., 2011) as well as theoretical insights into their operations

(Swersky et al., 2011; Vincent, 2010; Guillaume and Bengio, 2013). Regularized

auto-encoders play a prominent role in generalization for many different

reasons. One of the essential reasons is that regularization helps to capture the

manifold structure of data and models the data density distribution. Another

reason is to achieve an over-complete representation so that the representation

is more robust against the presence of noise in the data.

There are a number of proposals for regularized auto-encoders. Two

well-known examples are the denoising and contractive auto-encoders. The

Auto-encoders 9

denoising auto-encoder corrupts the input by adding noise, for example, from

a Bernoulli or Gaussian distribution, and attempts to reconstruct the original

data. The objective function of a denoising auto-encoder is expressed as

LDAE = E[‖r(z)− x‖2] (2.8)

where z = x + ε is the corrupted input and ε is the noise.

X
X~

Z

Figure 2.3. This figure demonstrates the idea behind the denoising criterion.

x is the original data that lies on a manifold. z is the corrupted input by

adding Gaussian noise and x̃ is projected back to the data manifold by trying

to reconstruct the original data x. The yellow arrows indicate the direction

towards which the auto-encoder tries to reconstruct. This figure is best viewed

in colour.

The intuition of the denoising criterion is to be robust near the data

distribution by learning to compensate for corruption in the data. Figure 2.3

delineates the procedure and the fundamental idea of the denoising criterion.

We assume that the data lies in a low-dimensional non-linear manifold that is

embedded in a higher-dimensional space. In Figure 2.3, x is the original data

that lies a on data manifold. z is the input corrupted by adding a Gaussian

noise and x̃ is projected back to the data manifold by trying to reconstruct the

original data x.

Contractive auto-encoders were introduced after denoising auto-encoder.

The objective function of a contractive auto-encoder is explicitly defined as

LCAE = E[‖r(x)− x‖]2] + λE[‖J f x‖2] (2.9)

where ‖J f (x)‖2 is a Jacobian matrix with the squared Frobenium norm (Vin-

cent et al., 2008) and λ is the postive hyperparameter that controls the strength

of the contractive penalty term. Instead of corrupting the input to contract

the surface of the data manifold, the contractive auto-encoder penalizes the

tangent of the manifold to be flat at the data points. The Jacobian of the

10 Background & Related work

encoding function f in the contractive term is expressed as ∂ f (x)
∂x . Then, the

contractive term can be rewritten as

LCAE = E[‖r(x)− x‖]2] + λ‖∂ f (x)
∂x
‖. (2.10)

The cost function of denoising auto-encoders has a very similar form

compared to that of the contractive auto-encoders. The objective function of a

denoising auto-encoder in Equation 2.8 can be re-expressed as

LDAE = E[‖r(x)− x‖2] + σ2E[‖∂r(x)
∂x
‖2] + o(σ2) (2.11)

as σ→ 0 where z = x+ ε is the corrupted input and ε ∼ N (0, σ2) is noise that

is independently drawn from the Gaussian distribution with variance of σ2

(Guillaume and Bengio, 2013). The derivation is presented in Appendix A.1.

This provides us with the ability to re-interpret the denoising criterion in

terms of a contracting penality term. Notice that the difference between the

regularization term of the denoising and contractive auto-encoder is that one

regularizes the derivative of the reconstruction function r(x) with the variance

σ2, while the other one regularizes the derivative of the encoding funtion f (x)

with the penalty cost as the hyper-parameter λ. Also, the denoising auto-

encoder is implicitly contracting by learning to be robust from the corrupted

data, while the contractive auto-encoder is explicitly contracting by penalizing

the derivative of the encoding function. However, both regularizers train the

models to be sensitive to the direction where the density of the data is more

concentrated and less sensitive to lower density region in the manifold.

Interestingly, the regularized auto-encoders have a special relationship

to energy-based models. For example, the denoising auto-encoder training

criterion can be seen as an approximation of the regularized score matching

algorithm (Vincent, 2010). Furthermore, the estimate of parameters of an

energy-based model under the score matching criterion is a particular form of

regularized auto-encoders (Swersky et al., 2011).

2.2 Restricted Boltzmann Machines

Often in machine learning, we start with the assumption that there exists

a distribution that explains the observed variables. In statistical machine

learning settings, our goal is to model the true distribution of the data sam-

ples we observe. Hence, we say that “what our model believes in ought to

Restricted Boltzmann Machines 11

capture the data samples that came from the data distribution”. Energy-based

models such as the Markov random fields and RBMs are some of the most

popular machine learning tools due to the expressiveness in their structure

and formulation, and their relationship to statistical physics.

While we discuss unsupervised probabilistic graphical models, we will use

the restricted Boltzmann machine (RBM) as a canonical example. An RBM is

an undirected bipartite graph† with visible (observed) variables v ∈ {0, 1}D

and hidden (latent) variables h ∈ {0, 1}H (Smolensky, 1986). The RBM is an

energy-based model where the energy of state v, h is given by

E(v, h; θ) = −∑
i

∑
j

Wijvihj −∑
i

bivi −∑
j

cjhj (2.12)

where θ = {W, b, c} are the parameters of the model. The marginalized prob-

ability over visible variables is formulated from the Boltzmann distribution,

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1
Z(θ) ∑

h
exp

(
−1
τ

E(v, h; θ)

)
(2.13)

such that Z(θ) = ∑v,h exp
(−1

τ E(v, h; θ)
)

is a normalizing constant and τ is

the thermodynamic temperature. We can marginalize over the binary hidden

states in Equation 2.12 and re-express in terms of a new energy F(v),

F(v; θ) = − log ∑
h

exp
(
−1
τ

E(v, h)
)

(2.14)

=
1
τ

D

∑
i

vibi −
1
τ

H

∑
j=1

log

(
1 + exp

(
cj +

D

∑
i

viWij

))
(2.15)

p(v; θ) =
exp

(
− F(v; θ)

)
Z(θ)

(2.16)

Following physics, this form of the energy is better known as a free energy,

as it expresses the difference between the average energy and the entropy

of a distribution; in this case, that of p(h|v). The derivation is presented in

Appendix A.2. Defining the distribution p(v; θ) in terms of free energy is

convenient since it naturally copes with the presence of latent variables.

†Energy-based models have an associated network graph that delineates the configuration

of the states. That is, the relationship of each variable to other variables is represented through

weights on edges of the network graph.

12 Background & Related work

The key characteristic of an RBM is the simplicity of inference due to

conditional independence between visible and hidden states:

p(h|v) = ∏
j

p(hj|v), p(hj = 1|v) = σ(∑
i

Wijvi + cj)

p(v|h) = ∏
i

p(vi|h), p(vi = 1|h) = σ(∑
j

Wijhj + bi)

where σ(·) = 1/(1 + exp (−·)).

2.2.1 Gaussian-Bernoulli Restricted Boltzmann Machines

Previously, we defined restricted Boltzmann machines with the Bernoulli

distribution over visible and hidden states, and they are meant model binary

data. Here, we describe Gaussian-Bernoulli restricted Boltzmann machines,

which has the Gaussian distribution over the visible states and the Bernoulli

distribution over the hidden states and they can model real value data such as

the pixel intensities of images.

Suppose that we have the similar settings as in previous section, where

hidden (latent) variables are binary variables, h ∈ {0, 1}H but visible variables

are real values, v ∈ RD. We can define an energy function as

E(v, h; θ) = −∑
i

∑
j

Wijvihj

σ2
i
−∑

i

(vi − bi)
2

σ2
i

−∑
j

cjhj (2.17)

where θ = {W, bi, cj, σi} are the paramaters of the model. Then the marginal-

ized probability over visible variables remains the same as Equation 2.13 with

the energy function Equation 2.17. Moreover, the general form of the free

energy of Gaussian-Bernoulli RBM remains the same as Equation 2.14, but

expanding the general form becomes

F(v; θ) = − log ∑
h

exp
(
−1
τ

E(v, h)
)

(2.18)

= − 1
τ

D

∑
i

(vi − bi)
2

σ2 − 1
τ

H

∑
j=1

log

(
1 + exp

(
cj +

D

∑
i

viWij

σ2

))
(2.19)

One of the reason why the energy function, Equation 2.17, is defined the way

it is with addition of σ is that the conditional probability over visible states

Restricted Boltzmann Machines 13

given hidden states becomes Gaussian distribution,

p(v|h) = ∏
i

p(vi|h) = N (v; b + Wh,σ2) (2.20)

p(vi|h) = N (vi; bi + Wijhj, σ2) (2.21)

where N (·) is the Gaussian distribution with the standard deviation of σ2

for visible states. The conditional probability over hidden states given visible

states remain same as sigmoid with the denominator of σ,

p(h|v) = ∏
j

p(hj|v), p(hj = 1|v) = σ(∑
i

Wijvi

σ2 + cj) (2.22)

where σ(·) = 1/(1 + exp (−·)).

2.2.2 Training Restricted Boltzmann Machines

As we defined the energy function in Equation 2.12, RBMs are energy-based

models and the probability of each configuration is inversely proportional

to the (scalar) energy. Therefore, the lower the energy for a given state

configuration, the higher the probability that network will be found in that

state. As a result of its elegancy, energy-based models provide a unified and

definite framework for machine learning practitioners to work with.

One popular way to learn an appropriate energy function is to maximize

the likelihood of the data samples with respect to the parameters. Generally,

we posit that making the model agree with the data samples will give a

good estimate of the true data distribution given large amount of data. The

maximum likelihood technique is a classical method of parameter estimation,

with many convenient and useful asymptotic guarantees. For energy-based

models, we typically minimize the negative log-likihood with repsect to the

parameters. For exponential models such as RBMs where p(x) is proportional

to the exponential of a negative potential function F(x), the gradient of the

data negative log-likelihood takes the form

∇θ = ∑
x∈D

∂F(x)
∂θ

−∑
x

p(x)
∂F(x)

∂θ
(2.23)

where the sum in the first term is over the dataset, D, and the sum in the

second term is over the entire domain of x. The first term has the effect of

pushing the parameters in a direction that decreases the energy surface of the

14 Background & Related work

model at the training data points, while the second term increases the energy

of all possible states.

There is one nasty problem that occurs when performing maximum like-

lihood learning with the energy-based model. There exists a normalizing

constant term, also known as the partition function, which sums over all

possible configuration of the states. As we can observe the second term in

Equation 2.23, computing the partition function is intractable unless the num-

ber of all possible states is small enough, hence we try to approximate the

partition function using Markov chain Monte Carlo (MCMC)†.

The name “restricted Boltzmann machine” comes from the bipartite graph

that makes visible states conditionally independent from the hidden states.

The conditionally independent distributions p(v|h) and p(h|v) naturally lead

to a block Gibbs sampling procedure, which is a special case of a MCMC

algorithm. Block Gibbs sampling works by groups of two or more variables

getting sampled and conditioned on all other group of variables. Thus, we

sample v|h and h|v. After running the block Gibbs Chain for n times, we will

get h0|v0 → v1|h0 → · · · → hn−1|vn−1 → vn|hn−1.

In order to compute a good estimate of the partition function, we need

to run the block Gibbs chain for a very long time. Of course, this is cumber-

some in practice. Hinton (2002) introduced the contrastive divergence learning

algorithm, where we only run the Gibbs chain for one time step such that

h0|v0 → v1|h0 → h1|v1. This is a heuristic algorithm that approximates the

infinite Gibbs chain since we are not using the statistics at the equilibrium

states. In the beginning of the learning, the initial weights are already the bad

parameters, hence, running the Gibbs chain for very long time is a waste of

computation. The reason why the constrastive divergence learning algorithm

works is that even after only a few steps of the chain, we get the sense of

which direction the model is wandering around; thus lowering the probability

of the regions that the model wanders away is a good enough heuristic.

We can formalize this by writing the learning updates for CD-k as follows

∆θCD−k ∝ − ∑
j∈D

∑
i 6∈D

(∂Fj(θ)

∂θ
− ∂Fi(θ)

∂θ

)
Tij (2.24)

†MCMC approaches to true samples based on the Ergodic Theorem for Markov Chain. The

Ergodic Theorem states that if the Markov Chain is an irreducible (time-homogeneous) discrete

MC with stationary distribution π, then 1
n ∑n f (xi)→ E[f (x)] as n→ ∞.

Higher-order Generative Models 15

where Tij is the probability of transitioning from state j to state i in k

steps of block Gibbs sampling. We can in principle replace Tij by any other

transition operator, so long as it preserves the equilibrium distribution. Indeed,

this is what alternative methods, like Persistent CD (Tieleman and Hinton,

2009), achieve.

2.3 Higher-order Generative Models

Learning to merely model data using deterministic or probabilistic models

is not good enough for modeling the real world. This is because the world is

made up of many entities and the relationships between them. We can observe

the interactions of the entities everywhere. In order to model several entities

and their relations, we can assign multiple variables to each entity and have

them interact with each other to model their relations. We refer to models

with three or more sets of interacting variables as higher-order models.

One natural way of formulating higher-order models is to have multiplica-

tive interactions between the variables. Multiplicative interactions are useful

for higher-order geneartive models because we can multiply two or more vari-

ables and through the parameters modulate the strength of the interactions.

Time series data, such as various styles of human motion, are good examples

for the use of multiplicative interaction models (Taylor and Hinton, 2009). As

well as, learning the depth from pair images (Konda and Memisevic, 2013)

and modeling various transformations of two images (Susskind et al., 2011)

demonstrate the good use of multiplicative interactions. In this section, we

introduce third-order interaction models that originated from auto-encoders

and restricted Boltzmann machines.

2.3.1 Gated Auto-encoders

Similar to the classical auto-encoder, the gated auto-encoder (GAE) consists of

an encoder h(·) and decoder r(·). While the standard auto-encoder processes

a datapoint x, the GAE processes input-output pairs (x, y). The GAE is usually

trained to reconstruct y given x, though it can also be trained symmetrically,

that is, to reconstruct both y from x and x from y. Intuitively, the GAE

learns relations between the inputs rather than representations of the inputs

16 Background & Related work

themselves†. If x 6= y (e.g. sequential frames of a video), then the mapping

units h learn transformations. In the case that x = y (i.e. the input is copied),

then the mapping units learn pixel covariances. These models are also known

as relational auto-encoders.

In the simplest form of the GAE, the M hidden units are given by a basis

expansion of x and y. The hidden unit is then defined as

hk(x, y) = σ(∑
i

∑
j

Wijkxiyj) (2.25)

and the output unit is defined as

r(yj|x, h) = ∑
i

∑
k

Wijkxihk (2.26)

where W is the weight parameter of the gated auto-encoder. The weight matrix

is a M× D × D tensor matrix, and the pair of variables, x and y, interacts

with the weight matrix to tune the third variable h. However, this leads to

a parameterization that it is at least quadratic in the number of inputs‡ and

thus, prohibitively large. Therefore, in practice, x, y, and h are projected

onto matrices or (“latent factors”), WX , WY, and WH , respectively. Figure 2.4

exhibits the architecture of non-factored and factored GAEs.

The number of factors, F, must be the same for X, Y, and H. Thus, the

model is completely parameterized by θ = {WX , WY, WH} such that WX and

WY are F× D matrices (assuming both x and y are D-dimensional) and WH

is an M× F matrix. The encoder function is defined by

h(x, y) = σ(WH((WXx)� (WYy))) (2.27)

where � is element-wise multiplication and σ(·) is an activation function. The

decoder function is defined by

r(x|y, h) = (WX)T((WYy)� (WH)Th(x, y)). (2.28)

Note that the parameters are usually shared between the encoder and

decoder. The choice of whether to apply a non-linearity to the output and the

†Relational features can be mixed with standard features by simply adding connections that

are not gated.
‡Equation 2.25 and Equation 2.26 have double summations that make the parameterization

grow in quadratic with repsect to the number of inputs.

Higher-order Generative Models 17

 Y

 Y

W

W

 X

 X
 ~ ~

T

 Y

 Y

WY

M

WMT

W

WX

 X

 X

WXT WYT

 ~ ~

Figure 2.4. The architecture of the non-factored GAE (on the left) and factored

GAE (on the right) with tied weights between the encoder and decoder.

specific form of objective function will depend on the nature of the inputs,

for example, binary, categorical, or real-valued. Here, we have assumed real-

valued inputs for simplicity of presentation. Therefore, Equation 2.28 is a

bi-linear function of h and we use a squared-error objective:

LGAE =
1
2
‖r(y|x)− y‖2. (2.29)

We can also constrain the GAE to be a symmetric model by training it to

reconstruct both x given y and y given x (Memisevic, 2011):

LGAE =
1
2
‖r(y|x)− y‖2 +

1
2
‖r(x|y)− x‖2. (2.30)

The symmetric objective can be thought of as the non-probabilistic ana-

logue of modelling a joint distribution over x and y as opposed to a conditional

distribution (Memisevic, 2011).

2.3.2 Mean Covariance Auto-encoders

In section 2.3.1, we saw that the auto-encoder learns to model the pixel

intensities. As well, we can view the denoising auto-encoder as learning to

model the mean of the pixel intensities based on the corrupted distribution

q(z|x),
Eq(z|x)[‖r(z)− x‖2] =

∫
‖r(z)− x‖2q(z|x)dz.

This allows us to call the denoising auto-encoder as the mean auto-encoder.

18 Background & Related work

Additionally, the GAE learns to model the relations in the pixel intensities

given the two inputs, x and y. Now, we shall consider the case when x and

y are the same input, i.e. y = x. Based on the definition of GAE, they must

model the relations between the pixels in x and y, where y is x, then this leads

to modeling the correlations within the pixels of x. Indeed, in order to fully

learn the covariance pattern, the GAEs need to learn from the same image but

with the noise in the data†. Hence, the GAEs with the setting where x = y are

called the covariance auto-encoder.

This naturally leads to combining the mean and covariance auto-encoders,

which lead to the mean-covariance auto-encoders (mcAE) (Memisevic, 2011).

The objective function of the mean-covariance auto-encoder is expressed as

LMCAE = LDAE + LDGAE

= ‖r(z)− x‖2 + ‖r(z|x)− x‖2

where LDGAE is the mean squared error function of the denoised gated auto-

encoders with setting of x = y and the tied weights between the encoder and

decoder, and also the tied weights between the factored layers. When working

with the mcAE in practice, the data are often centered at zero and whitened

as well. This gets rid of the first and second-order statistics of the data.

2.3.3 Factored Gated Restricted Boltzmann Machines

RBMs are generative models that are precisely trained to model the data

distribution p(x). We shall now explain higher-order generative models

that have multiplicative interactions. More specifically, we will expound

probabilistic energy-based models that have three-way interactions.

We can define the gated RBM as

E(vx, vy, h) = −∑
i

vx
i ci −∑

j
vy

j aj −∑
k

hkbk − ∑
i<j<k

vx
i vy

j hkWijk (2.31)

where θ = {Wijk, ci, aj, bk} are the parameters of the model, vx = {vx
1 · · · vx

D}, vy =

{vx
1 · · · v

y
D} are the visible states and hk are the hidden states. We can see that

the gated RBM has a cubic number of parameters as the weight matrix Wijk

has three associated indices. In order to reduce the number of parameters, we

†It is not possible to learn the covariance without injecting noise, since there needs to be

uncertainty associated with the data.

Higher-order Generative Models 19

can factorize the weight matrix Wijk such that Wijk = Wi f Wj f Wh f . Then, the

energy function becomes

E(vx
i , vy

j , hk) = −∑
i

vx
i ci −∑

j
vy

j aj −∑
k

hkbk −∑
i

∑
j

∑
k

vx
i vy

j hkWi f Wj f Wh f .

(2.32)

This allows us to have linearly many parameters per factors. Of course, Equa-

tion 2.32 will be less expressive compared to the energy term in Equation 2.31,

but the energy with factored weights should still have enough capacity to

capture patterns and regularities. We can re-express the energy function in

Equation 2.32 as

E(vx
i , vy

j , hk) = −∑
i

vx
i ci−∑

j
vy

j aj−∑
k

hkbk−
(
∑

i
vx

i Wi f
)(

∑
j

vy
j Wj f

)(
∑
k

hkWk f
)
.

(2.33)

The visible variables vx and vy are the observables, and the hidden unit hk

will be turned on if vx
i and vy

j have a particular pattern k. The change in the

energy with respect to one of the three variables formulates to[
E f (hk = 0)− E f (hk = 1)

]
= Wk f

(
∑

i
vx

i Wi f
)(

∑
j

vy
j Wj f

)
, (2.34)

assuming that the states are binary vectors.

The marginalized probability over the visible states is defined as

p(vx, vy; θ) =
p∗(vx, vy; θ)

Z(θ)
=

1
Z(θ) ∑

h
exp

(
−1
τ

E(vx, vy, h; θ)

)
(2.35)

and we can re-express in terms of the free energy as

F(vx, vy; θ) = − log ∑
h

exp
(
−1
τ

E(vx, vy, h)
)

= − 1
τ

vT
x a− 1

τ
vT

y c− 1
τ ∑

k=1
log

(
1 + exp

(
WH(WXvx

)(
WYvy

)
+ b

))

p(vx, vy; θ) =
exp

(
− F(vx, vy; θ)

)
Z(θ)

.

This particular three-way energy-based model is called a factored gated re-

stricted Boltzmann machine (FGRBM).

20 Background & Related work

The learning rule for the FGRBM is

4Wk f ∝〈−
∂E f

∂Wk f
〉data − 〈−

∂E f

∂Wk f
〉model

=〈hk
(
∑

i
vx

i Wi f
)(

∑
j

vy
j Wj f

)
〉data − 〈hk

(
∑

i
vx

i Wi f
)(

∑
j

vy
j Wj f

)
〉model

(2.36)

where 〈·〉data is the expectation with respect to the conditional distribution

p(h|vx, vy) and 〈·〉model is the expectation with respect to the joint distribution

p(vx, vy, h). We can apply the contrastive divergence algorithm to approximate

the second term in Equation 2.36 such that we sample h|vx, vy, vx|vy, h,

and vy|vx, h. In general, this is no different than training the RBM with the

constrastive divergence learning algorithm except that we extend to multiple

variables and factorized weights.

In the literature, the three-way interaction RBMs are used to learn image

transformations over time (Memisevic and Hinton, 2010) and learn time series

data such as modeling human motions (Taylor and Hinton, 2009). For the

case of modeling time series, we condition on visible state v<t to predict the

visible state vt where v<t is the previous time step of vt. The free energy can

be formulated as

F(vt|v<t; θ) = − log ∑
h

exp
(
−1
τ

E(vt, h|v<t)

)

=
1
τ

vT
<ta +

1
τ

vT
t c− 1

τ ∑
k=1

log

(
1 + exp

(
WH(WXv<t

)(
WYvt

)
+ b

))
.

During the training, v<t is clamped. Hence, we do not need to sample the v<t

but only vt.

2.3.4 Mean-Covariance Restricted Boltzmann Machines

In the previous section, we mentioned that the world is made up of entities and

the relations between them and described that the multiplicative interaction

models such as the FGRBMs can model relations. Here, consider a model that

can model both the entities and the correlations within the entities called the

mean-covariance restricted Boltzmann machine (mcRBM) (Ranzato and Hinton,

2010).

Higher-order Generative Models 21

mcRBM are essentially the heterogeneous compositions of RBM and

FGRBMs. The energy function of mcRBM is the combination of the energy

function from RBM and FGRBM such that

E(v, hm,hc) = ERBM(v, hm) + EFGRBM(v, v, hc)

=−∑
i

viai −∑
j

hm
j bm

j −∑
k

hc
kbc

k −∑
ij

Wijvihm
j −

(
∑
k

hc
kPk f

)(
∑

i
viCi f

)2

where θ = {W, P, C, a, bm, bc} are the parameters of the model and v is

the visible state, and hm and hc are the two sets of hidden states for RBM

and FGRBM. The hidden states hm represent the intensities of the data and

the other hidden states hc represent pair-wise dependencies between the

intensities of the data. The biases a are shared by RBM and FGRBM, the

parameter θm = {W, hm} are the weight connections from RBM, the weights

θc = {P, C, hc} are the factored weight connections from FGRBM. The weight

P is a non-positive matrix. The inputs of the FGRBM must be tied in order to

model the relations within the data.

As has been shown, there are heavy constraints that are added to the

energy function. This was required to produce the Gaussian distribution with

an inverse covariance matrix with dependency on hc (Ranzato and Hinton,

2010) such that

Σ−1 = Cdiag(Phc)CT . (2.37)

The inverse covariance matrix in Equation 2.37 explains the reason why P has

non-positive entries and the inputs are tied. FGRBMs with tied inputs and

non-positive P are known as covariance restricted Boltzmann machines since they

model the correlations within the data.

The marginalized probability over visible variables is formulated from the

Boltzmann distribution,

p(v; θ) =
1

Z(θ) ∑
h

exp

(
−1
τ

E(v, hm, hc; θ)

)
=

1
Z(θ) ∑

h
exp

(
− F(v, hm, hc; θ)

)
where the free energy of mcRBM is expressed as

F(v) = −∑
i

viai −∑
k

log

(
1 + exp

((
∑

f
Pj f
)(

∑
i

viCi f
)2

+ bj

))

−∑
j

log

(
1 + exp

(
∑

i
viWij + bj

))
.

22 Background & Related work

The conditional distribution over the visible states becomes

p(v|hm, c) = N (Σ
(
∑ Wijhm

j

)
, Σ). (2.38)

The conditional distribution over the visible states show that the two sets of

hidden states hm and hc models the Gaussian distribution with the mean and

the covariance.

This particular model is applied for modeling the natural images and

accoustics of speech (Ranzato and Hinton, 2010; Dahl et al., 2010). In natural

images, pixels are very much correlated with very small noise on individual

pixels; hence, the mcRBMs have the innate ability to model and produce

the samples of natural images. Similarly, speech data has rich correlation

structures. Dahl et al. (2010) employed the mcRBM to model the accoustics

and then stacked RBMs on top of hm and hc to further extract hidden features.

3 Analyzing Dynamics on Families
of Auto-encoders

The most successful and well-known example of non-probabilistic unsu-

pervised learning is the auto-encoder. Conceptually simple and easy to train

via backpropagation, various regularized variants of the model have been

proposed (Rifai et al., 2011; Vincent et al., 2008; Swersky et al., 2011) as well as

theoretical insights into their operation (Vincent, 2010; Droniou and Sigaud,

2013).

In practice, the latent representation learned by auto-encoders has typically

been used to solve a secondary problem, often classification. The most com-

mon setup is to train a single auto-encoder on data from all classes and then

a classifier is tasked to discriminate among classes. However, this contrasts

with the way probabilistic models have typically been used in the past: in

that literature, it is more common to train one model per class and use Bayes’

rule for classification. There are two challenges to classifying using per-class

auto-encoders. First, up until very recently, it was not known how to obtain

the score of data under an auto-encoder, meaning how much the model “likes”

an input. Second, auto-encoders are non-probabilistic, so even if they can be

scored, the scores do not integrate to 1 and therefore the per-class models

need to be calibrated.

Kamyshanska and Memisevic (2013) have recently shown how scores can

be computed from an auto-encoder by interpreting it as a dynamical system.

Although the scores do not integrate to 1, they show how one can combine

the unnormalized scores into a generative classifier by learning class-specific

normalizing constants from labeled data.

23

24 Analyzing Dynamics on Families of Auto-encoders

In this chapter, we turn our interest towards a variant of auto-encoders

which are capable of learning higher-order features from data (Memisevic,

2011). The main idea is to learn relations between pixel intensities rather than

the pixel intensities themselves by structuring the model as a tri-partite graph

which connects hidden units to pairs of images. If the images are different, the

hidden units learn how the images transform. If the images are the same, the

hidden units encode within-image pixel covariances. Learning such higher-

order features can yield improved results on recognition and generative tasks.

We adopt a dynamical systems view of gated auto-encoders, demonstrating

that they can be scored similarly to the classical auto-encoder. We develop

a theory which yields insights into the operation of gated auto-encoders.

In addition to the theory, we show in our experiments that a classification

model based on gated auto-encoder scoring can outperform a number of other

representation learning architectures, including classical auto-encoder scoring.

We also demonstrate that scoring can be useful for the structured output task

of multi-label classification.

3.1 Gated Auto-Encoder Scoring

In (Kamyshanska and Memisevic, 2013), the authors showed that data

could be scored under an auto-encoder by interpreting the model as a dynam-

ical system. In contrast to the probabilistic views based on score matching

(Swersky et al., 2011; Vincent, 2010; Droniou and Sigaud, 2013) and regular-

ization, the dynamical systems approach permits scoring under models with

either linear (real-valued data) or sigmoid (binary data) outputs, as well as

arbitrary hidden unit activation functions. The method is also agnostic to the

learning procedure used to train the model, meaning that it is suitable for

the various types of regularized auto-encoders which have been proposed

recently. In this section, we demonstrate how the dynamical systems view can

be extended to the GAE.

3.1.1 Vector field representation

Similar to (Kamyshanska and Memisevic, 2013), we will view the GAE as a

dynamical system with the vector field defined by

F(y|x) = r(y|x)− y.

Gated Auto-Encoder Scoring 25

The vector field represents the local transformation that y|x undergoes as

a result of applying the reconstruction function r(y|x). Repeatedly apply-

ing the reconstruction function to an input y|x → r(y|x) → r(r(y|x)|x) →
· · · r(r · · · r(y|x)|x) yields a trajectory whose dynamics, from a physics per-

spective, can be viewed as a force field. At any point, the potential force acting

on a point is the gradient of some potential energy (negative goodness) at that

point. In this light, the GAE reconstruction may be viewed as pushing pairs

of inputs x, y in the direction of lower energy.

Our goal is to derive the energy function, which we call a scoring function,

and which measures how much a GAE “likes” a given pair of inputs (x, y)

up to normalizing constant. In order to find an expression for the potential

energy, the vector field must be able to written as the derivative of a scalar

field (Kamyshanska and Memisevic, 2013). To check this, we can submit to

Poincaré’s integrability criterion: For some open, simple connected set U , a

continuously differentiable function F : U → <m defines a gradient field if

and only if

∂Fi(y)
∂yj

=
∂Fj(y)

∂yi
, ∀i, j = 1 · · · n.

The vector field defined by the GAE indeed satisfies Poincaré’s integrability

criterion; therefore it can be written as the derivative of a scalar field. A

derivation is given in Appendix B.1.1. This also applies to the GAE with a

symmetric objective function (Equation 2.30) by setting the input as ξ|γ such

that ξ = [y; x] and γ = [x; y] and following the exact same procedure.

3.1.2 Scoring the GAE

As mentioned in Section 3.1.1, our goal is to find an energy surface, so that

we can express the energy for a specific pair (x, y). From the previous section,

we showed that Poincaré’s criterion is satisfied and this implies that we can

write the vector field as the derivative of a scalar field. Moreover, it illustrates

that this vector field is a conservative field and this means that the vector field

is a gradient of some scalar function, which in this case is the energy function

of a GAE:

r(y|x)− y = ∇E.

26 Analyzing Dynamics on Families of Auto-encoders

Hence, by integrating out the trajectory of the GAE (x, y), we can measure the

its energy along a path. Moreover, the line integral of a conservative vector

field is path independent, which allows us to take the anti-derivative of the

scalar function:

E(y|x) =
∫
(r(y|x)− y)dy =

∫
WY

((
WXx)�WHh(u

))
dy−

∫
ydy

=WY
((

WXx
)
�WH

∫
h (u) dy

)
−
∫

ydy, (3.1)

where u is an auxiliary variable such that u = WH((WYy) � (WXx)) and
du
dy = WH(WY � (WXx⊗ 1D)), and ⊗ is the Kronecker product. Moreover,

the decoder can be re-formulated as

r(y|x) = (WY)T(WXx� (WH)Th(y, x))

=
(
(WY)T � (WXx⊗ 1D)

)
(WH)Th(y, x).

Re-writing Equation 3.1 in terms of the auxiliary variable u, we get

E(y|x) =
(
(WY)T � (WYx⊗ 1D)

)
(WH)T (3.2)∫

h(u)
(

WH
(

WY � (WXx⊗ 1D)
))−1

du−
∫

ydy

=
∫

h(u)du− 1
2

y2 + const. (3.3)

A more detailed derivation from Equqation 3.1 to Equation 3.3 is provided in

Appendix B.1.2.

Identical to (Kamyshanska and Memisevic, 2013), if h(u) is an element-

wise activation function and we know its anti-derivative, then it is very simple

to compute E(x, y).

3.2 Relationship to Restricted Boltzmann Machines

In this section, we relate GAEs through the scoring function to other types

of Restricted Boltzmann Machines, such as the Factored Gated Conditional

RBM (Taylor and Hinton, 2009) and the Mean-covariance RBM (Ranzato and

Hinton, 2010).

Relationship to Restricted Boltzmann Machines 27

3.2.1 Gated Auto-encoder and Factored Gated Conditional
Restricted Boltzmann Machines

Kamyshanska and Memisevic (2013) showed that several hidden activation

functions defined gradient fields, including sigmoid, softmax, tanh, linear,

rectified linear function (ReLU), modulus, and squaring. These activation

functions are applicable to GAEs as well.

In the case of the sigmoid activation function, σ = h(u) = 1
1+exp (−u) , our

energy function becomes

Eσ =2
∫
(1 + exp−(u))−1du− 1

2
(x2 + y2) + const,

=2 ∑
k

log (1 + exp (WH
k· (W

Xx�WXy)))− 1
2
(x2 + y2) + const.

Note that if we consider the conditional GAE we reconstruct x given y only,

this yields

Eσ(y|x) = ∑
k

log (1 + exp (WH(WY
k·y�WX

k· x)))−
y2

2
+ const. (3.4)

This expression is identical, up to a constant, to the free energy in a Factored

Gated Conditional Restricted Boltzmann Machine (FCRBM) with Gaussian

visible units and Bernoulli hidden units. We have ignored biases for simplicity.

A derivation including biases is shown in Appendix B.2.1.

3.2.2 Mean-Covariance Auto-encoder and Mean-covariance
Restricted Boltzmann Machines

The Covariance auto-encoder (cAE) was introduced in (Memisevic, 2011). It is

a specific form of symmetrically trained auto-encoder with identical inputs:

x = y, and tied input weights: WX = WY. It maintains a set of relational

mapping units to model covariance between pixels. One can introduce a

separate set of mapping units connected pairwise to only one of the inputs

which model the mean intensity. In this case, the model becomes a Mean-

covariance auto-encoder (mcAE).

Theorem 1. Consider a cAE with encoder and decoder:

h(x) = h(WH((WXx)2) + b)

r(x|h) = (WX)T(WXx� (WH)Th(x)) + a,

28 Analyzing Dynamics on Families of Auto-encoders

where θ = {WX , WH , a, b} are the parameters of the model, and h(z) = 1
1+exp (−z)

is a sigmoid. Moreover, consider a Covariance RBM (Ranzato and Hinton, 2010)

with Gaussian-distributed visibles and Bernoulli-distributed hiddens, with an energy

function defined by

Ec(x, h) =
(a− x)2

σ2 −∑
f

Ph(Cx)2 − bh.

Then the energy function of the cAE with dynamics r(x|y)− x is equivalent to the

free energy of Covariance RBM up to a constant:

E(x, x) = ∑
k

log
(

1 + exp
(

WH(WXx)2 + b
))
− x2

2
+ const. (3.5)

The proof is given in Appendix B.2.2. We can extend this analysis to the

mcAE by using the above theorem and the results from (Kamyshanska and

Memisevic, 2013).

Corollary 1.1. The energy function of a mcAE and the free energy of a Mean-

covariance RBM (mcRBM) with Gaussian-distributed visibles and Bernoulli-distributed

hiddens are equivalent up to a constant. The energy of the mcAE is:

E = ∑
k

log
(

1 + exp
(
−WH(WXx)2 − b

))
+∑

k
log (1 + exp(Wx + c))− x2 + const

(3.6)

where θm = {W, c} parameterizes the mean mapping units and θc = {WX , WH , a, b}
parameterizes the covariance mapping units.

Proof. The proof is very simple. Let Emc = Em + Ec, where Em is the energy of

the mean auto-encoder, Ec is the energy of the covariance auto-encoder, and

Emc is the energy of the mcAE. We know from Theorem 1 that Ec is equivalent

to the free energy of a covariance RBM, and the results from (Kamyshanska

and Memisevic, 2013) show that that Em is equivalent to the free energy of

mean (classical) RBM. As shown in (Ranzato and Hinton, 2010), the free

energy of a mcRBM is equal to summing the free energies of a mean RBM

and a covariance RBM.

3.3 Classification with Gated Auto-encoders

Kamyshanska and Memisevic (2013) demonstrated that one application

of the ability to assign energy or scores to auto-encoders was in constructing

Classification with Gated Auto-encoders 29

a classifier from class-specific auto-encoders. In this section, we explore two

different paradigms for classification. Similar to that work, we consider the

usual multi-class problem by first training class-specific auto-encoders, and

using their energy functions as confidence scores. We also consider the more

challenging structured output problem, specifically, the case of multi-label

prediction where a data point may have more than one associated label, and

there may be correlations among the labels.

3.3.1 Classification using class-specific gated auto-encoders

One approach to classification is to take several class-specific models and

assemble them into a classifier. The best-known example of this approach to

fit several directed graphical models and use Bayes’ rule to combine them.

The process is simple because the models are normalized, or calibrated. While

it is possible to apply a similar technique to undirected or non-normalized

models such as auto-encoders, one must take care to calibrate them.

The approach proposed in (Kamyshanska and Memisevic, 2013) is to train

K class-specific auto-encoders, each of which assigns a non-normalized energy

to the data Ei (x) , i = 1 . . . , K, and then define the conditional distribution

over classes zi as

P(zi|x) =
exp (Ei (x) + Bi)

∑j exp
(
Ej (x) + Bj

) , (3.7)

where Bi is a learned bias for class i. The bias terms take the role of calibrating

the unnormalized energies. Note that we can similarly combine the energies

from a symmetric gated auto-encoder where x = y (i.e. a covariance auto-

encoder) and apply Equation 3.7. If, for each class, we train both a covariance

auto-encoder and a classical auto-encoder (i.e. a “mean” auto-encoder) then

we can combine both sets of unnormalized energies as follows

PmcAE(zi|x) =
exp(EM

i (x) + EC
i (x) + Bi)

∑j exp(EM
j (x) + EC

j (x) + Bj)
, (3.8)

where EM
i (x) is the energy which comes from the “mean” (standard) auto-

encoder trained on class i and EC
i (x) the energy which comes from the “co-

variance” (gated) auto-encoder trained on class i. We call the classifiers in

Equation 3.7 and Equation 3.8 “Covariance Auto-encoder Scoring” (cAES) and

“Mean-Covariance Auto-encoder Scoring” (mcAES), respectively.

30 Analyzing Dynamics on Families of Auto-encoders

The training procedure is summarized as follows:

1. Train a (mean)-covariance auto-encoder individually for each class. Both

the mean and covariance auto-encoder have tied weights in the encoder

and decoder. The covariance auto-encoder is a gated auto-encoder with

tied inputs.

2. Learn the Bi calibration terms using maximum likelihood, and back-

propagate to the GAE parameters.

Experimental results

We followed the same experimental setup as (Memisevic and Hinton, 2010)

where we used a standard set of “Deep Learning Benchmarks” (Larochelle

et al., 2007). We used mini-batch stochastic gradient descent to optimize pa-

rameters during training. The hyper-parameters: number of hiddens, number

of factors, corruption level, learning rate, weight-decay, momentum rate, and

batch sizes were chosen based on a held-out validation set. Corruption levels

and weight-decay were selected from {0, 0.1, 0.2, 0.3, 0.4, 0.5}, and number

of hidden and factors were selected from {100, 300, 500}. We selected the

learning rate and weight-decay from the range (0.001, 0.0001).

Classification error results are shown in Table 3.1. First, the error rates of

auto-encoder scoring variant methods illustrate that across all datasets AES

outperforms cAES and mcAES outperforms both AES and cAES. AE models

pixel means and cAE models pixel covariance, while mcAE models both mean

and covariance, making it naturally more expressive. We observe that cAES

and mcAES achieve lower error rates by a large margin on rotated MNIST

with backgrounds (final row). On the other hand, both cAES and mcAES

perform poorly on MNIST with random white noise background (second row

from bottom). We believe this phenomenon is due to the inability to model

covariance in this dataset. In MNIST with random white noise the pixels

are typically uncorrelated, where in rotated MNIST with backgrounds the

correlations are present and consistent.

3.3.2 Multi-label classification via optimization in label space

The dominant application of deep learning approaches to vision has been

the assignment of images to discrete classes (e.g. object recognition). Many

Classification with Gated Auto-encoders 31

DATA SVM RBM DEEP GSM AES cAES mcAES

RBF SAA3

RECT 2.15 4.71 2.14 0.56 0.84 0.61 0.54

RECTIMG 24.04 23.69 24.05 22.51 21.45 22.85 21.41

CONVEX 19.13 19.92 18.41 17.08 21.52 21.6 20.63

MNISTSMALL 3.03 3.94 3.46 3.70 2.61 3.65 3.65

MNISTROT 11.11 14.69 10.30 11.75 11.25 16.5 13.42

MNISTRAND 14.58 9.80 11.28 10.48 9.70 18.65 16.73

MNISTROTIM 55.18 52.21 51.93 55.16 47.14 39.98 35.52

Table 3.1. Classification error rates on the Deep Learning Benchmark dataset.

SAA3 stands for three-layer Stacked Auto-encoder. SVM and RBM results are

from (Vincent, 2010), DEEP and GSM are results from (Memisevic, 2011), and

AES is from (Kamyshanska and Memisevic, 2013).

applications, however, involve “structured outputs” where the output variable

is high-dimensional and has a complex, multi-modal joint distribution. Struc-

tured output prediction may include tasks such as multi-label classification

where there are regularities to be learned in the output, and segmentation,

where the output is as high-dimensional as the input. A key challenge to such

approaches lies in developing models that are able to capture complex, high

level structure like shape, while still remaining tractable.

Though our proposed work is based on a deterministic model, we have

shown that the energy, or scoring function of the GAE is equivalent, up to a

constant, to that of a conditional RBM, a model that has already seen some

use in structured prediction problems (Mnih et al., 2011; Li et al., 2013).

GAE scoring can be applied to structured output problems as a type

of “post-classification” (Mnih and Hinton, 2010). The idea is to let a naiv̈e,

non-structured classifier make an initial prediction of the outputs in a fast,

feed-forward manner, and then allow a second model (in our case, a GAE)

clean up the outputs of the first model. Since GAEs can model the relationship

between input x and structured output y, we can initialize the output with

the output of the naiv̈e model, and then optimize its energy function with

respect to the outputs. Input x is held constant throughout the optimization.

Li et al. (2013) recently proposed Compositional High Order Pattern Poten-

tials, a hybrid of Conditional Random Fields (CRF) and Restricted Boltzmann

32 Analyzing Dynamics on Families of Auto-encoders

Machines. The RBM provides a global shape information prior to the locally-

connected CRF. Adopting the idea of learning structured relationships between

outputs, we propose an alternate approach which the inputs of the GAE

are not (x, y) but (y, y). In other words, the post-classification model is a

covariance auto-encoder. The intuition behind the first approach is to use a

GAE to learn the relationship between the input x and the output y, whereas

the second method aims to learn the correlations between the outputs y.

We denote our two proposed methods GAEXY and GAEY2 . GAEXY cor-

responds to a GAE, trained conditionally, whose mapping units directly

model the relationship between input and output and GAEY2 corresponds to a

GAE which models correlations between output dimensions. GAEXY defines

E (y|x), while GAEY2 defines E (y|y) = E(y). They differ only in terms of the

data vectors that they consume. The training and test procedures are detailed

in Algorithm 1†.

Experimental results

We consider multi-label classification, where the problem is to classify in-

stances which can take on more than one label at a time. We followed the

same experimental set up as (Mnih et al., 2011). Four multi-labeled datasets

were considered: Yeast (Elisseeff and Weston, 2002) consists of biological

attributes, Scene (Boutell et al., 2004) is image-based, and MTurk (Mandel

et al., 2010) and MajMin (Mandel and Ellis, 2008) are targeted towards tagging

music. Yeast consists of 103 biological attributes and has 14 possible labels,

Scene consists of 294 image pixels with 6 possible labels, and MTurk and

MajMin each consist of 389 audio features extracted from music and have 92

and 96 possible tags, respectively. Figure 3.1 visualizes the covariance matrix

for the label dimensions in each dataset. We can see from this that there are

correlations present in the labels which suggests that a structured approach

may improve on a non-structured predictor.

We compared our proposed approaches to logistic regression, a standard

MLP, and the two structured CRBM training algorithms presented in (Mnih

et al., 2011). To permit a fair comparison, we followed the same procedure for

training and reporting errors as in that paper, where we cross validated over

10 folds and training, validation, test examples are randomly separated into

†In our experiments, we used the cross-entropy loss function for loss1 and loss2.

Classification with Gated Auto-encoders 33

Algorithm 1 Structured Output Prediction with GAE scoring

1: procedure Multi-label Classification(D = {(xi, yi) ∈ Xtrain ×Ytrain})

2: Train a Multi-layer Perceptron (MLP) to learn an input-output mapping f (·):

argmin
θ1

l(x, y; θ1) = ∑
i

loss1 ((f (xi; θ1)− yi) (3.9)

where loss1 is an appropriate loss function for the MLP.

3: Train a Gated Auto-encoder with inputs (xi, yi); For the case of GAEY2 , set

xi = yi.

argmin
θ2

l(x, y; θ2) = ∑
i

loss2 (r(yi|xi, θ2)− yi) (3.10)

where loss2 is an appropriate reconstructive loss for the auto-encoder.

4: for each test data point xi ∈ Xtest do

5: Initialize the output using the MLP.

y0 = f (xtest) (3.11)

6: while ‖E(yt+1|x)− E(yt|x)‖ > ε or ≤ max. iter. do

7: Compute ∇yt E

8: Update yt+1 = yt − λ∇yt E

9: where ε is the tolerance rate with respect to the convergence of the

optimization.

80%, 10%, and 10% in each fold. The error rate was measured by averaging

the errors on each label dimension.

The performance on four multi-label datasets is shown in Table 3.2. We

observed that adding a small amount of Gaussian noise to the input y im-

proved the performance for GAEXY. However, adding noise to the input x

did not have as much of an effect. We suspect that adding noise makes the

GAE more robust to the input provided by the MLP. Interestingly, we found

that the performance of GAEY2 was negatively affected by adding noise. Both

of our proposed methods, GAESXY and GAESY2 generally outperformed the

other methods except for GAESY2 on the MajMin dataset. At least for these

datasets, there is no clear winner between the two. GAESXY achieved lower

error than GAESY2 for Yeast and MajMin, and the same error rate on the

MTurk dataset. However, GAESY2 outperforms GAESXY on the Scene dataset.

Overall, the results show that GAE scoring may be a promising means of

34 Analyzing Dynamics on Families of Auto-encoders

Yeast

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

Scene

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

Mturk

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

Majmin

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

Figure 3.1. Covariance matrices for the multi-label datasets: Yeast, Scene,

MTurk, and MajMin.

Method Yeast Scene MTurk MajMin

LogReg 20.16 10.11 8.10 4.34

HashCRBM∗ 20.02 8.80 7.24 4.24

MLP 19.79 8.99 7.13 4.23

GAESXY 19.27 6.83 6.59 3.96

GAESY2 19.58 6.81 6.59 4.29

Figure 3.2. Error rate on multi-label datasets. We report standard errors

across 10 repeated runs with different random weight initializations. Note

that LogReg and HashCRBM are taken from (Mnih et al., 2011) and we

therefore do not report standard errors.

Discussion 35

post-classification in structured output prediction.

3.4 Discussion

There have been many theoretical and empirical studies on auto-encoders

(Vincent et al., 2008; Rifai et al., 2011; Swersky et al., 2011; Vincent, 2010;

Guillaume and Bengio, 2013; Kamyshanska and Memisevic, 2013), however,

the theoretical study of gated auto-encoders is limited apart from (Memisevic,

2011; Droniou and Sigaud, 2013). The GAE has several intriguing properties

that a classical auto-encoder does not, based on its ability to model relations

among pixel intensities rather than just the intensities themselves. This opens

up a broader set of applications. In this paper, we derive some theoretical

results for the GAE that enable us to gain more insight and understanding of

its operation.

We cast the GAE as a dynamical system driven by a vector field in order

to analyze the model. In the first part of the paper, by following the same

procedure as (Kamyshanska and Memisevic, 2013), we showed that the GAE

could be scored according to an energy function. From this perspective, we

demonstrated the equivalency of the GAE energy to the free energy of a

FCRBM with Gaussian visible units, Bernoulli hidden units, and sigmoid

hidden activations. In the same manner, we also showed that the covariance

auto-encoder can be formulated in a way such that its energy function is

the same as the free energy of a covariance RBM, and this naturally led to a

connection between the mean-covariance auto-encoder and mean-covariance

RBM. One interesting observation is that Gaussian-Bernoulli RBMs have been

reported to be difficult to train (Krizhevsky, 2009; Cho et al., 2011), and the

success of training RBMs is highly dependent on the training setup (Wang

et al., 2014). Auto-encoders are an attractive alternative, even when an energy

function is required.

Structured output prediction is a natural next step for representation

learning. The main advantage of our approach compared to other popular

approaches such as Markov Random Fields, is that inference over is extremely

fast, using a gradient-based optimization of the auto-encoder scoring func-

tion. In the future, we plan on tackling more challenging structured output

prediction problems.

4 Training Energy-based Models
Under Various Kinds of Dynam-
ics

Section 2.2.2 describes the maximum likelihood learning approach to learn

an appropriate probabilistic energy function with respect to the parameters.

A common problem in maximum likelihood learning in energy-based models

is to estimate the parameters of a high-dimensional probabilistic model using

gradient descent on the model’s negative log likelihood. For exponential

family models where p(x) is proportional to the exponential of a negative

potential function F(x), the gradient of the data negative log-likelihood takes

the form in Equation 2.23. Recall that the first term has the effect of pushing

the parameters in a direction that decreases the energy surface of the model

at the training data points, while the second term increases the energy of all

possible states. Since the second term is intractable for all but trivial models,

we cannot, in practice, accommodate for every state of x, but rather resort

to sampling. We call states in the sum in the first term positive particles and

those in the second term negative particles, in accordance with their effect on

the likelihood (opposite their effect on the energy). Thus, the intractability of

the second term becomes a problem of negative particle selection (NPS).

The most famous approach to NPS is Contrastive Divergence (CD) (Hinton,

2002), which is the centre-piece of unsupervised neural network learning

in energy-based models. CD proposes to sample the negative particles by

employing a Markov chain Monte Carlo (MCMC) transition operator a small

number of times to each data state. This is in contrast to taking an unbiased

sample from the distribution, by applying the MCMC operator a large number

of times, until the distribution reaches equilibrium, which is often prohibitive

36

Minimum Probabilty Flow 37

for practical applications. Much research has attempted to better understand

this approach and the reasoning behind its success or failure (Sutskever and

Tieleman, 2009; MacKay, 2001), leading to many variations being proposed

from the perspective of improving the MCMC chain.

Alternatively, we can try to understand or look closely at the model’s

dynamical system. Typically, there are two stage process in the maximum

likelihood learning where one is inference and another one is learning, and

we usually have the separate treatments for the two. By taking the dynamical

systems approach, we do not have to separate them into the two separate

stage procedure. What we mean by “dynamical system approach?” We

usually start from some distribution and it evolves to another distribution,

more precisely to a stationary distribution. One can think of it as the states

evolving towards more probable states. This particular idea is often used in

physics and chemistry related fields, where they describe the time-evolution

of a system that can be modeled with the countable number of states at any

time and probabilistically switches between states. In this chapter, we take

a more general approach to the problem of NPS, in particular, through the

lens of the Minimum Probability Flow (MPF) algorithm (Sohl-Dickstein et al.,

2011). The aim of this chapter is to contrast variations on the dynamics, and

experimentally demonstrate that MPF training outperforms CD on Restricted

Boltzmann Machines.

4.1 Minimum Probabilty Flow

The key intuition behind MPF is that NPS can be reformulated in a firm

theoretical context by treating the model distribution as the end point of some

explicit continuous dynamics, and seeking to minimize the flow of probability

away from the data under those dynamics. In this context then, NPS is

no longer a sampling procedure employed to approximate an intractable

function, but arises naturally out of the probability flow from data states

to non-data states. That is, MPF provides a theoretical environment for the

formal treatment of Tij that offers a much more general perspective of that

operator than CD-k can. In the same vein, it better formalizes the notion of

minimizing divergence between positive and negative particles.

38 Training Energy-based Models Under Various Kinds of Dynamics

4.1.1 Dynamics of the Model

The primary mathematical apparatus for MPF is a continuous time Markov

chain known as the master equation,

ṗi = ∑
j 6=i

[Γij p
(t)
j − Γji p

(t)
i] (4.1)

where j are the data states and i are the non-data states and Γij is the

probability flow rate from state j to state i. Note that each state is a full

vector of variables, and we are theoretically enumerating all states. ṗi is the

rate of change of the probability of state i, that is, the difference between the

probability flowing out of any state j into state i and the probability flowing

out of state i to any other state j at time t. We can re-express ṗi in a simple

matrix form as

ṗ = Γp (4.2)

by setting Γii = −∑i 6=j Γji p
(t)
i . We note that if the transition matrix Γ is ergodic,

then the model has a unique stationary distribution.

This is a common model for exploring statistical mechanical systems,

but it is unwieldly in practice for two reasons, namely, the continuous time

dynamics, and exponential size of the state space. For our purposes, we will

actually find the former an advantage, and the latter irrelevant.

The objective of MPF is to minimize the KL divergence between the data

distribution and the distribution after evolving an infinitesimal amount of

time under the dynamics:

θMPF = argminθ J(θ), J(θ) = DKL(p(0)||p(ε)(θ))

Approximating J(θ) up to a first order Taylor expansion with respect to

time t, our objective function reduces to

J(θ) =
ε

|D| ∑
j∈D

∑
i 6∈D

Γij (4.3)

and θ can be optimized by gradient descent on J(θ). Since Γij captures

probability flow from state j to state i, this objective function has the quite

elegant interpretation of minimizing the probability flow from data states to

non-data states (Sohl-Dickstein et al., 2011).

Minimum Probabilty Flow 39

4.1.2 Form of the Transition Matrix

MPF does not propose to actually simulate these dynamics. There is, in fact, no

need to, as the problem formulation reduces to a rather simple optimization

problem with no intractable component. However, we must provide a means

for computing the matrix coefficients Γij. Since our target distribution is the

distribution defined by the RBM, we require Γ to be a function of the energy,

or more particularly, the parameters of the energy function.

A sufficient (but not necessary) means to guarantee that the distribution

p∞ (θ) is a fixed point of the dynamics is to choose Γ to satisfy detailed

balance, that is

Γji p
(∞)
i (θ) = Γij p

(∞)
j (θ). (4.4)

The following theorem provides a general form for the transition matrix

such that the equilibrium distribution is that of the RBM:

Theorem 1. Suppose p(∞)
j is the probability of state j and p(∞)

i is the probability of

state i. Let the transition matrix be

Γij = gij exp
(o(Fi − Fj) + 1

2
(Fj − Fi)

)
(4.5)

such that o(·) is any odd function, where gij is the symmetric connectivity between

the states i and j. Then this transition matrix satisfies detailed balance in Equation

4.4.

The proof is provided in Appendix C.1.1. The transition matrix proposed

by (Sohl-Dickstein et al., 2011) is thus the simplest case of Theorem 1, found

by setting o(·) = 0 and gij = gji:

Γij = gij exp
(1

2
(Fj(θ)− Fi(θ)

)
. (4.6)

Given a form for the transition matrix, we can now evaluate the gradient

of J(θ)

∂J(θ)
∂θ

=
ε

|D| ∑
j∈D

∑
i 6∈D

(∂Fj(θ)

∂θ
− ∂Fi(θ)

∂θ

)
Tij

Tij = gij exp
(1

2
(

Fj(θ)− Fi(θ)
))

and observe the similarity to the formulation given for the RBM trained by

CD-k (Equation 2.24). Unlike with CD-k, however, this expression was derived

through an explicit dynamics and well-formalized minimization objective.

40 Training Energy-based Models Under Various Kinds of Dynamics

4.2 Probability Flow Rates Γ

At first glance, MPF might appear doomed, due to the size of Γ, namely

2D × 2D, and the problem of enumerating all of the states. However, the

objective function in Equation 4.3 summing over the Γij’s only considers

transitions between data states j (limited in size by our data set) and non-data

states i (limited by the sparseness of our design). By specifying Γ to be sparse,

the intractability disappears, and complexity is dominated by the size of the

dataset.

Using traditional methods, an RBM can be trained in two ways, either with

sampled negative particles, like in CD-k or PCD (also known as stochastic

maximum likelihood) (Hinton, 2002; Tieleman and Hinton, 2009), or via an

inductive principle, with fixed sets of “fantasy cases”, like in general score

matching, ratio matching, or pseudolikelihood (Hyvärinen, 2005; Marlin and

Freitas, 2011; Besag, 1975). In a similar manner, we can define Γ by specifying

the connectivity function gij either as a distribution from which to sample or

as fixed and deterministic.

In this section, we examine various kinds of connectivity functions and

their consequences on the probability flow dynamics.

4.2.1 1-bit flip connections

It can be shown that score matching is a special case of MPF in continuous

state spaces, where the connectivity function is set to connect all states within

a small Euclidean distance r in the limit of r → 0 (Sohl-Dickstein et al., 2011).

For simplicity, in the case of a discrete state space (Bernoulli RBM), we can

fix the Hamming distance to one instead, and consider that data states are

connected to all other states 1-bit flip away:

gij =

1, if state i, j differs by single bit flip

0, otherwise
(4.7)

1-bit flip connectivity gives us a sparse Γ with 2DD non-zero terms (rather

than a full 22D), and may be seen as NPS where the only negative particles

are those which are 1-bit flip away from data states. Therefore, we only ever

evaluate |D|D terms from this matrix, making the formulation tractable. This

Probability Flow Rates Γ 41

was the only connectivity function pursued in (Sohl-Dickstein et al., 2011) and

is a natural starting point for the approach.

Algorithm 2 Minimum probability flow learning with single bit-flip connectiv-

ity. Note we leave out all gij since here we are explicit about only connecting

states of Hamming distance 1.

• Initialize the parameters θ

• for each training example d ∈ D do

1. Compute the list of states, L, with Hamming distance 1 from d

2. Compute the probability flow Γid = exp (1
2 (Fd(θ)− Fi(θ)) for each

i ∈ L

3. The cost function for d is ∑i∈L Γid

4. Compute the gradient of the cost function, ∂J(θ)
∂θ = ∑i∈L

(
∂Fd(θ)

∂θ −
∂Fi(θ)

∂θ

)
Γid

5. Update parameters via gradient descent with θ ← θ − λ∇J(θ)

end for

4.2.2 Factorized Minimum Probability Flow

Previously, we considered connectivity gij as a binary indicator function of

both states i and j. Instead, we may wish to use a probability distribution,

such that gij is the probability that state j is connected to state i (i.e. ∑i gij = 1).

Following (Sohl-Dickstein, 2011), we simplify this approach by letting gij = gi,

yielding an independence chain (Tierney, 1994). This means the probability of

being connected to state i is independent of j, giving us an alternative way

of constructing a transition matrix such that the objective function can be

factorized:

J(θ) =
1
|D| ∑

j∈D
∑
i 6∈D

gi

(gj

gi

) 1
2

exp
(

1
2
(

Fj(x; θ)− Fi(x; θ)
))

(4.8)

=

(
1
|D| ∑

j∈D
exp

(
1
2
(

Fj(x; θ) + log gj
)))(

∑
i 6∈D

gi exp
(

1
2
(
− Fi(x; θ) + log gi

)))
(4.9)

42 Training Energy-based Models Under Various Kinds of Dynamics

where
(gj

gi

) 1
2 is a scaling term required to counterbalance the difference

between gi and gj. The independence in the connectivity function allows us

to factor all the j terms in 4.8 out of the inner sum, leaving us with a product

of sums, something we could not achieve with 1-bit flip connectivity since

the connection to state i depends on it being a neighbor of state j. Note that,

intuitively, learning is facilitated by connecting data states to states that are

probable under the model (i.e. to contrast the divergence). Therefore, we can

use p(v; θ) to approximate gi. In practice, for each iteration n of learning,

we need the gi and gj terms to act as constants with respect to updating θ,

and thus we sample them from p(v; θn−1). We can then rewrite the objective

function as J(θ) = JD(θ)JS (θ)

JD(θ) =

(
1
|D| ∑

x∈D
exp

[
1
2
(

F(x; θ)− F(x; θn−1)
)])

(4.10)

JS (θ) =

(
1
|S| ∑

x′∈S
exp

[
1
2
(
− F(x′; θ) + F(x′; θn−1)

)])

where S is the sampled set from p(v; θn−1), and the normalization terms in

log gj and log gi cancel out. Note we use the θn−1 notation to refer to the

parameters at the previous iteration, and simply θ for the current iteration.

4.2.3 Persistent Minimum Probability Flow

There are several ways of sampling “fantasy particles” from p(v; θn−1). Notice

that taking the data distribution with respect to θn−1 is necessary for stable

learning.

Previously, persistent contrastive divergence (PCD) was developed to

improve CD-k learning (Tieleman and Hinton, 2009). Similarly, persistence

can be applied to sampling in MPF connectivity functions. For each update,

we pick a new sample based on a MCMC sampler which starts from previous

samples. Then we update θn, which satsifies J(θn) ≤ J(θn−1) (Sohl-Dickstein,

2011). The pseudo-code for persistent MPF is the same as Factored MPF

except for drawing new samples, which is indicated by square brackets in

Algorithm 3.

As we will show, using persistence in MPF is important for achieving faster

convergence in learning. While the theoretical formulation of MPF guarantees

eventual convergence, the focus on minimizing the initial probability flow will

Experiments 43

have little effect if the sampler mixes too slowly. In practice, combining the

persistent samples and non-persistent samples gave better performance.

Algorithm 3 Factored [Persistent] MPF learning with probabilistic connectiv-

ity.

• for each epoch n do

1. Draw a new sample Sn based on S0 [Sn−1] using an MCMC sam-

pler.

2. Compute JS (θ)

3. for each training example d ∈ D do

(a) Compute Jd(θ). The cost function for d is J(θ) = Jd(θ)JS (θ)

(b) Compute the gradient of the cost function,
∂J(θ)

∂θ = JS (θ)Jd(θ)
∂Fd(θ)

∂θ + 1
|S| Jd ∑x′∈S

(
∂F(x′)

∂θ exp
[

1
2
(

F(x′; θ)− F(x′; θn−1)
)])

(c) Update parameters via gradient descent with θ ← θ − λ∇J(θ)

end for

4.3 Experiments

We conducted the first empirical study of MPF under different types of

connectivity as discussed in Section 4.2. We compared our results to CD-k

with varying values for K. We analyzed the MPF variants based on training

RBMs and assessed them quantitatively and qualitatively by comparing the

log-liklihoods of the test data and samples generated from model. For the

experiments, we denote the 1-bit flip, factorized, and persistent methods as

MPF-1flip, FMPF, and PMPF, respectively.

The goals of these experiments are to

1. Compare the performance between MPF algorithms under different

connectivities; and

2. Compare the performance between MPF and CD-k.

In our experiments, we considered the MNIST and CalTech Silhouette

datasets. MNIST consists of 60,000 training and 10,000 test images of size 28

× 28 pixels containing handwritten digits from the classes 0 to 9. The pixels

in MNIST are binarized based on thresholding. From the 60,000 training

44 Training Energy-based Models Under Various Kinds of Dynamics

examples, we set aside 10,000 as validation examples to tune the hyperparam-

eters in our models. The CalTech Silhouette dataset contains the outlines of

objects from the CalTech101 dataset, which are centered and scaled on a 28 ×
28 image plane and rendered as filled black regions on a white background

creating a silhouette of each object. The training set consists of 4,100 examples,

with at least 20 and at most 100 examples in each category. The remaining

instances were split evenly between validation and testing†. Hyperparameters

such as learning rate, number of epochs, and batch size were selected from

discrete ranges and chosen based on a held-out validation set. The learning

rate for FMPF and PMPF were chosen from the range [0.001, 0.00001] and the

learning rate for 1-bit flip was chosen from the range [0.2, 0.001].

4.3.1 MNIST - exact log likelihood

In our first experiment, we trained eleven RBMs on the MNIST digits. All

RBMs consisted of 20 hidden units and 784 (28×28) visible units. Due to

the small number of hidden variables, we calculated the exact value of the

partition function by explicitly summing over all visible configurations. Five

RBMs were learned by PCD1, CD1, CD10, CD15, and CD25. Seven RBMs were

learned by 1 bit flip, FMPF, and FPMPF‡. Block Gibbs sampling is required for

FMPF-k and FPMPF-k similar to CD-k training, where the number of steps is

given by k.

The average log test likelihood values of RBMs with 20 hidden units are

presented in Table 4.1. This table gives a sense of the performance under

different types of MPF dynamics when the partition function can be calculated

exactly. We observed that PMPF consistently achieved a higher log-likelihood

than FMPF. MPF with 1 bit flip was very fast but gave poor performance

compared to FMPF and PMPF. We also observed that MPF-1flip outperformed

CD1. FMPF always performed slightly worse than CD-k training with the

same number of Gibbs steps. However, PMPF always outperformed CD-k.

One advantage of FMPF is that it converges much quicker than CD-k or

PMPF. This is because we used twice many samples as PMPF as mentioned in

Section 4.2.3. Figure 4.1 shows initial data and the generated samples after

†More details on pre-processing the CalTech Silhouettes can be found in

http://people.cs.umass.edu/ marlin/data.shtml
‡FPMPF is the composition of the FMPF and PMPF connectivities.

Experiments 45

Table 4.1. Experimental results on MNIST using 11 RBMs with 20 hidden

units each. The average training and test log-probabilities over 10 repeated

runs with random parameter initializations are reported.
Method Average log Test Average log Train Time (sec) Batchsize

CD1 -145.63 ± 1.30 -146.62 ± 1.72 831 100
PCD -136.10 ± 1.21 -137.13 ± 1.21 2620 300
MPF-1flip -142.13 ± 2.01 -143.02 ± 3.96 2931 75

CD10 -135.40 ± 1.21 -136.46 ± 1.18 17329 100
FMPF10 -136.37 ± 0.17 -137.35 ± 0.19 12533 60
PMPF10 -141.36 ± 0.35 -142.73 ± 0.35 11445 25
FPMPF10 -134.04 ± 0.12 -135.25 ± 0.11 22201 25

CD15 -134.13 ± 0.82 -135.20 ± 0.84 26723 100
FMPF15 -135.89 ± 0.19 -136.93 ± 0.18 18951 60
PMPF15 -138.53 ± 0.23 -139.71 ± 0.23 13441 25
FPMPF15 -133.90 ± 0.14 -135.13 ± 0.14 27302 25

CD25 -133.02 ± 0.08 -134.15 ± 0.08 46711 100
FMPF25 -134.50 ± 0.08 -135.63 ± 0.07 25588 60
PMPF25 -135.95 ± 0.13 -137.29 ± 0.13 23115 25
FPMPF25 -132.74 ± 0.13 -133.50 ± 0.11 50117 25

running 100 Gibbs steps from each RBM. PMPF produces samples that are

visually more appealing than the other methods.

DATA PCD MPF-1flip CD10 FMPF10 PMPF10

CD15 FMPF15 PMPF15 CD25 FMPF25 PMPF25

Figure 4.1. Samples generated from the training set. Samples in each panel

are generated by RBMs trained under different paradigms as noted above

each image.

4.3.2 MNIST - estimating log likelihood

In our second set of experiments, we trained RBMs with 200 hidden units. We

trained them exactly as described in Section 4.3.1. These RBMs are able to

generate much higher-quality samples from the data distribution, however,

46 Training Energy-based Models Under Various Kinds of Dynamics

the partition function can no longer be computed exactly.

In order to evaluate the model quantitatively, we estimated the test log-

likelihood using the Conservative Sampling-based Likelihood estimator (CSL)

(Bengio et al., 2013b) and annealed importance sampling (AIS) (Salakhutdinov

and Murray, 2008). Given well-defined conditional probabilities P(v|h) of a

model and a set of latent variable samples S collected from a Markov chain,

CSL computes
log f̂ (v) = log meanh∈SP(v|h). (4.11)

The advantage of CSL is that sampling latent variables h instead of v has the

effect of reducing the variance of the estimator. Also, in contrast to annealed

importance sampling (AIS) (Salakhutdinov and Murray, 2008), which tends to

overestimate, CSL is much more conservative in its estimates. However, most

of the time, CSL is far off from the true estimator, so we bound our negative

log-likelihood estimate from above and below using both AIS and CSL.

DATA PCD MPF-1flip CD10 FMPF10 PMPF10

CD15 FMPF15 PMPF15 CD25 FMPF25 PMPF25

Figure 4.2. Samples generated from the training set. Samples in each panel

are generated by RBMs trained under different paradigms as noted above

each image.

Table 4.2 demonstrates the test log-likelihood of various RBMs with 200

hidden units. The ranking of the different training paradigms with respect

to performance was similar to what we observed in Section 4.3.1 with PMPF

emerging as the winner. However, contrary to the first experiment, we ob-

served that MPF with 1 bit flip did not perform well. Moreover, FMPF and

PMPF both tended to give higher test log-likelihoods than CD-k training.

Smaller batch sizes worked better with MPF when the number of hiddens was

increased. Once again, we observed smaller variances compared to CD-k with

Experiments 47

Table 4.2. Experimental results on MNIST using 11 RBMs with 200 hidden

units each. The average estimated training and test log-probabilities over 10

repeated runs with random parameter initializations are reported. Likelihood

estimates are made with CSL (Bengio et al., 2013b) and AIS (Salakhutdinov

and Murray, 2008)
CSL AIS

Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time (sec) Batchsize

CD1 -138.63 ± 0.48 -138.70 ± 0.45 -98.75 ± 0.66 -98.61 ± 0.66 1258 100
PCD1 -114.14 ± 0.26 -114.13 ± 0.28 -88.82 ± 0.53 -89.92 ± 0.54 2614 100
MPF-1flip -179.73 ± 0.085 -179.60 ± 0.07 -141.95 ± 0.23 -142.38 ± 0.74 4575 75

CD10 -117.74 ± 0.14 -117.76 ± 0.13 -91.94 ± 0.42 -92.46 ± 0.38 24948 100
FMPF10 -115.11 ± 0.09 -115.10 ± 0.07 -91.21 ± 0.17 -91.39 ± 0.16 24849 25
PMPF10 -114.00 ± 0.08 -113.98 ± 0.09 -89.26 ± 0.13 -89.37 ± 0.13 24179 25
FPMPF10 -112.45 ± 0.03 -112.45 ± 0.03 -83.83 ± 0.23 -83.26 ± 0.23 24354 25

CD15 -115.96 ± 0.12 -115.21 ± 0.12 -91.32 ± 0.24 -91.87 ± 0.21 39003 100
FMPF15 -114.05 ± 0.05 -114.06 ± 0.05 -90.72 ± 0.18 -90.93 ± 0.20 26059 25
PMPF15 -114.02 ± 0.11 -114.03 ± 0.09 -89.25 ± 0.17 -89.85 ± 0.19 26272 25
FPMPF15 -112.58 ± 0.03 -112.60 ± 0.02 -83.27 ± 0.15 -83.84 ± 0.13 26900 25

CD25 -114.50 ± 0.10 -114.51 ± 0.10 -91.36 ± 0.26 -91.04 ± 0.25 55688 100
FMPF25 -113.07 ± 0.06 -113.07 ± 0.07 -90.43 ± 0.28 -90.63 ± 0.27 40047 25
PMPF25 -113.70 ± 0.04 -113.69 ± 0.04 -89.21 ± 0.14 -89.79 ± 0.13 52638 25
FPMPF25 -112.38 ± 0.02 -112.42 ± 0.02 -83.25 ± 0.27 -83.81 ± 0.28 53379 25

both forms of MPF, especially with FMPF. We noted that FMPF and PMPF

always have smaller variance compared to CD-k. This implies that FMPF and

PMPF are less sensitive to random weight initialization. Figure 4.2 shows

initial data and generated samples after running 100 Gibbs steps for each

RBM. PMPF clearly produces samples that look more like digits.

4.3.3 Caltech 101 Silhouettes - estimating log likelihood

Finally, we evaluated the same set of RBMs on the Caltech-101 Silhouettes

dataset. Compared to MNIST, this dataset contains much more diverse struc-

tures with richer correlation among the pixels. It has 10 times more categories,

contains less training data per category, and each object covers more of the

image. For these reasons, we use 500 hidden units per RBM. The estimated

average log-likelihood of train and test data is presented in Table 4.3.

The results for Caltech 101 Silhouettes are consistent with MNIST. In

every case, we observed a larger margin between PMPF and CD-k when

the number of sampling steps was smaller. In addition, the single bit flip

technique was not particularly successful, especially as the number of latent

48 Training Energy-based Models Under Various Kinds of Dynamics

DATA PCD1 MPF 1-bit flip CD10 FMPF10 PMPF10

CD15 FMPF15 PMPF15 CD25 FMPF25 PMPF25

Figure 4.3. Random samples generated by RBMs with different training

procedures.

variables grew. We speculate that the reason for this might have to do with

the slow rate of convergence for the dynamic system. Moreover, PMPF works

better than FMPF for similar reasons. By having persistent samples as the

learning progresses, the dynamics always begin closer to equilibrium, and

hence converge more quickly. Figure 4.3 shows initial data and generated

samples after running 100 Gibbs steps for each RBM on Caltech28 dataset.

4.4 Discussion

MPF is an unsupervised learning algorithm that can be employed off-the-

shelf to any energy-based model. It has a number of favorable properties but

has not seen application proportional to its potential. In this chapter, we first

expounded on MPF and its connections to CD-k training, which allowed us

to gain a better understanding and perspective to CD-k. We proved a general

form for the transition matrix such that the equilibrium distribution converges

to that of an RBM. This may lead to future extensions of MPF based on the

choice of o(·) in Equation 4.5.

One of the merits of MPF is that the choice of designing a dynamic system

by defining a connectivity function is left open as long as it satisfies the fixed

point equation. We thoroughly explored three different connectivity structures,

noting that connectivity can be designed inductively or by sampling. Finally,

we showed empirically that MPF, and in particular, PMPF, outperforms CD-k

Discussion 49

Table 4.3. Experimental results on Caltech-101 Silhouettes using 11 RBMs

with 500 hidden units each. The average estimated training and test log-

probabilities over 10 repeated runs with random parameter initializations are

reported. Likelihood estimates are made with CSL (Bengio et al., 2013b) and

AIS (Salakhutdinov and Murray, 2008).
CSL AIS

Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time (sec) Batchsize

CD1 -251.30 ± 1.80 -252.04 ± 1.56 -141.87 ± 8.80 -142.88 ± 8.85 300 100
PCD1 -199.89 ± 1.53 -199.95 ± 1.31 -124.56 ± 0.24 -116.56 ± 2.40 784 100
MPF-1flip -281.55 ± 1.68 -283.03 ± 0.60 -164.96 ± 0.23 -170.92 ± 0.20 505 100

CD10 -207.77 ± 0.92 -207.16 ± 1.18 -128.17 ± 0.20 -120.65 ± 0.19 4223 100
FMPF10 -211.30 ± 0.84 -211.39 ± 0.90 -135.59 ± 0.16 -135.57 ± 0.18 2698 20
PMPF10 -203.13 ± 0.12 -203.14 ± 0.10 -128.85 ± 0.15 -123.06 ± 0.15 11973 20
FPMPF10 -204.15 ± 0.37 -203.92 ± 0.31 -123.35 ± 0.16 -108.81 ± 0.15 7610 20

CD15 -205.12 ± 0.87 -204.87 ± 1.13 -125.08 ± 0.24 -117.09 ± 0.21 6611 100
FMPF15 -210.66 ± 0.24 -210.19 ± 0.30 -130.28 ± 0.14 -128.57 ± 0.15 3297 20
PMPF15 -201.47 ± 0.13 -201.67 ± 0.10 -127.09 ± 0.10 -121 ± 0.12 18170 20
FPMPF15 -201.50 ± 0.13 -201.70 ± 0.10 -122.33 ± 0.13 -107.88 ± 0.14 9603 20

CD25 -201.56 ± 0.11 -201.50 ± 0.13 -124.80 ± 0.20 -117.51 ± 0.23 13745 100
FMPF25 -206.93 ± 0.13 -206.86 ± 0.11 -129.96 ± 0.07 -127.15 ± 0.07 10542 10
FPMPF25 -199.69 ± 0.11 -199.53 ± 0.14 -122.75 ± 0.13 -108.32 ± 0.12 18550 10
PMPF25 -199.53 ± 0.11 -199.51 ± 0.12 -127.81 ± 020 -122.23 ± 0.17 23998 10

for training generative models. Until now, RBM training was dominated by

methods based on CD-k; however, our results indicate that MPF is a practical

and effective alternative.

5 Summary

Throughout the thesis, we reviewed some fundamental machine learning

tools such as the families of RBMs and auto-encoders, and used them as the

basis to build better insights for unsupervised learning mechanisms.

The theme of chapter 3 project was to advance the theory of gated auto-

encoders by revealing the model’s capability to model the data distributions.

This was done by scoring GAEs according to an energy function. From this

perspective, we demonstrated the equivalency of the GAE energy to the free

energy of a FCRBM with Gaussian visible units, Bernoulli hidden units, and

sigmoid hidden activations. In the same manner, we also showed that the

covariance auto-encoder can be formulated in a way such that its energy

function is the same as the free energy of a covariance RBM, and this naturally

led to a connection between the mean-covariance auto-encoder and mean-

covariance RBM. For practical purposes, we also demonstrated an example of

how this score can be used to solve multi-label classification.

In chapter 4, we explored the learning algorithm which allows us to

approximate or capture the data distributions. More precisely, we investigated

a specific learning algorithm for energy-based models, namely the minimum

probability flow learning. We also derived a general form for the transition

matrix such that the equilibrium distribution converges to that of an RBM,

and we explored different types of dynamics for the MPF learning algorithm.

One of the merits of the MPF is that the choice of designing a dynamical

system by defining a connectivity function is left open as long as it satisfies

the fixed point equation.

50

Summary 51

While conducting these two research projects, the common approach we

took was to analyze the models and learning algorithms through the lens of

dynamical systems. For example, the potential energy of gated auto-encoders

were discovered by defining the vector field in the input space and integrating

over the trajectory that is created by the gated auto-encoders. Moreover,

contrastive divergence learning algorithm, which used to be seen as a heuristic

function, was re-interpreted based on the gradient of minimum probability

flow learning expression. This thesis emphasized the dynamical systems

approach to understand and develop machine learning algorithms. For future

contribution, we can try to analyze the learning dynamics of different models.

For example, families of restricted Boltzmann machines and auto-encoders

share the same energy function; though, their learning procedure is very

different from one and the other. Hence, throughly analzying the learning

dynamics of two models can be extended from this thesis.

References

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise

training of deep networks. In Advances in Neural Information Processing

Systems, 2007.

Y. Bengio, A. Courville, and P. Vicent. Representation learning: A review and

new perspectives. IEEE Transactions on Pattern Analysis & Machine Intelligence,

35(8):1798–1828, 2013a.

Y. Bengio, L. Yao, and K. Cho. Bounding the test log-likelihood of generative

models. In Proceedings of the International Conference of Learning Representations

(ICLR), 2013b.

Y. Bengio, E. Laufer, A. Guillance, and J. Yosinski. Deep generative stochastic

networks trainable by backprop. In Proceedings of the International Conference

of Machine Learning (ICML), 2014.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195,

1975.

M. R. Boutell, J. Luob, X. Shen, and C. M. Brown. Learning multi-label scene

classification. Pattern Recognition, 37:1757–1771, 2004.

K. Cho, A. Ilin, and T. Raiko. Improved learning of gaussian-bernoulli re-

stricted boltzmann machines. In ICANN, pages 10–17, 2011.

B. C. Csáji. Approximation with artificial neural networks. Technical report,

Faculty of Sciences; EÃűtvÃűs LorÃąnd University, Hungary, 2001.

52

References 53

G. Dahl, M. Ranzato, A.-r. Mohamed, and G. E. Hinton. Phone recognition with

the mean-covariance restricted boltzmann machine. In Nueral Information

Processing Systsems (NIPS), 2010.

A. Droniou and O. Sigaud. Gated autoencoders with tied input weights. In

ICML, 2013.

A. Elisseeff and J. Weston. A kernel method for multi-labelled classification.

In NIPS, 2002.

A. Guillaume and Y. Bengio. What regularized auto-encoders learn from

the data generating distribution. In International Conference on Learning

Representations, 2013.

G. Hinton. To recognize shapes, first learn to generate images. Computational

Neuroscience: Theoretical Insights into Brain Function. Elsevie, pages 535–547,

2007.

G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep

belief nets. neural computation. Neural Computation, 18:1527–1554, 2006.

G. E. Hinton. How neural networks learn from experience. In Scientific

American, 1992.

G. E. Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14:1771–1880, 2002.

A. Hyvärinen. Estimation of non-normalized statistical models by score

matching. Journal of Machine Learning Research, 6:695–709, 2005.

H. Kamyshanska and R. Memisevic. On autoencoder scoring. In ICML, pages

720–728, 2013.

K. Konda and R. Memisevic. Unsupervised learning of depth and motion. In

arXiv:1312.3429v2, 2013.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, Department of Computer Science, University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In NIPS, 2012.

54 References

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation.

In ICML, 2007.

Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean,

and A. Y. Ng. Building high-level features using large scale unsupervised

learning. http://arxiv.org/pdf/1112.6209v5.pdf, 2011.

Y. Li, D. Tarlow, and R. Zemel. Exploring compositional high order pattern

potentials for structured output learning. In CVPR, 2013.

D. J. C. MacKay. Failures of the one-step learning algorithm, 2001. URL http:

//www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html. Unpub-

lished Technical Report.

M. I. Mandel and D. P. W. Ellis. A web-based game for collecting music

metadata. Journal New of Music Research, 37:151–165, 2008.

M. I. Mandel, D. Eck, and Y. Bengio. Learning tags that vary within a song.

In ISMIR, 2010.

B. M. Marlin and N. d. Freitas. Asymptotic efficiency of deterministic estima-

tors for discrete energy-based models: Ratio matching and pseudolikelihood.

In Proceedings of the Uncertainty in Artificial Intelligence (UAI), 2011.

R. Memisevic. Gradient-based learning of higher-order image features. In

International Conference on Computer Vision, 2011.

R. Memisevic and G. E. Hinton. Learning to represent spatial transformations

with factored higher-order boltzmann machines. Neural Computation, 22(6):

1473–1492, 2010.

V. Mnih and G. Hinton. Learning to detect roads in high-resolution aerial

images. In Proceedings of the 11th European Conference on Computer Vision

(ECCV), September 2010.

V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted boltzmann

machines for structured output prediction. In UAI, 2011.

A.-r. Mohamed and G. Hinton. Phone recognition using restricted boltzmann

machines. In International Conference on Acoustics, Speech and Signal Processing,

2010.

http://www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html
http://www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html

References 55

M. Ranzato and G. E. Hinton. Modeling pixel means and covariances using

factorized third-order boltzmann machines. In Computer Vision and Pattern

Recognition Conference (CVPR), 2010.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-

encoders:explicit invariance during feature extraction. In International Con-

ference on Machine Learning, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition.

Volume 1: Foundations, MIT Press, 1:318–362, 1986.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In International

Conference on Artificial Intelligence and Statistics, 2009.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief

networks. In Proceedings of the International Conference of Machine Learning

(ICML), 2008.

P. Smolensky. Information processing in dynamical systems: Foundations of

harmony theory. In Parallel Distributed Processing: Volume 1: Foundations,

pages 194–281. MIT Press, 1986.

J. Sohl-Dickstein. Persistent minimum probability flow. Technical report,

Redwood Centre for Theoretical Neuroscience, 2011.

J. Sohl-Dickstein, P. Battaglino, and M. R. DeWeese. Minimum probability flow

learning. In Proceedings of the International Conference of Machine Learning

(ICML), 2011.

M. Spitzer. Brain research and learning over the life cycle. In In Schooling for

tomorrow:Personalising education, pages 47–62. 2006.

J. Susskind, R. Memisevic, G. Hinton, and M. Pollefeys. Modeling the joint

density of two images under a variety of transformations. In Computer

Vision and Pattern Recognition, 2011.

I. Sutskever and T. Tieleman. On the convergence properties of contrastive

divergence. In Proceedings of the AI & Statistics (AI STAT), 2009.

56 References

K. Swersky, M. Ranzato, D. Buchman, N. D. Freitas, and B. M. Marlin. On

autoencoders and score matching for energy based models. In International

Conference on Machine Learning, pages 1201–1208, 2011.

G. W. Taylor and G. Hinton. Factored conditional restricted boltzmann ma-

chines for modeling motion style. In International Conference on Machine

Learning, 2009.

T. Tieleman and G. E. Hinton. Using fast weights to improve persistent

contrastive divergence. In Proceedings of the International Conference of Machine

Learning (ICML), 2009.

L. Tierney. Markov chains for exploring posterior distributions. Annals of

Statistics, 22:1701–1762, 1994.

P. Vincent. A connection between score matching and denoising auto-encoders.

Neural Computation, 23(7):1661–1674, 2010.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and

composing robust features with denoising autoencoders. In International

Conference on Machine Learning, 2008.

N. Wang, J. Melchior, and L. Wiskott. Gaussian-binary restricted boltzmann

machines on modeling natural image statistics. Technical report, Institut

fur Neuroinformatik Ruhr-Universitat Bochum, Bochum, 44780, Germany,

2014.

A Background & Related Work

A.1 Auto-encoders

The objective function of denoising auto-encoder is expressed as

LDAE = E[‖r(x)− x‖2] + σ2E[‖∂r(z)
∂x
‖2] + o(σ2) (A.1)

as σ→ 0 where z = x+ ε ais the corrupted input and ε ∼ N (0, σ2) is the noise

that is independently drawn form the Gaussian distribution with variance of

σ2.

Minimizing the mean square error of a denoising auto-encoder is

LDAE = E[‖r(z)− x‖2]

= E[‖r(x + ε)− x‖2].

We can Taylor expend the funtion r(z) around x, then we can express the

objective function as

LDAE = E[‖r(x) + ε
∂r(x)

∂x
+ o(σ2)− x‖2]

= E[‖r(x)− x + ε
∂r(x)

∂x
+ o(σ2)‖2]

= E[‖r(x)− x‖2 + 2(r(x)− x)ε
∂r(x)

∂x
+ ‖ε∂r(x)

∂x
‖2] + o(σ2)

= E[‖r(x)− x‖2] + 2E[(r(x)− x)ε
∂r(x)

∂x
] + E[εT ∂r(x)

∂x

T ∂r(x)
∂x

ε] + o(σ2)

= E[‖r(x)− x‖2] + 2E[ε]E[(r(x)− x)
∂r(x)

∂x
] + TrE[εTε]E[‖∂r(x)

∂x
‖2] + o(σ2)

57

58 Background & Related Work

Since E[ε] = 0 and E[εtε] = σ2, we dervie

LDAE = E[‖r(x)− x‖2] + σ2E[‖∂r(x)
∂x
‖2] + o(σ2).

A.2 Restricted Boltzmann Machines

F(v; θ) = − log ∑
h

exp
(
−1
τ

E(v, h)
)
=

1
τ

vTb− 1
τ

H

∑
j=1

log

(
1+ exp

(
vTW +b

))

This form of the energy is better known as a free energy, as it expresses the

difference between the average energy and the entropy of a distribution, in

this case, that of p(h|v).

F(v; θ) = − log ∑
h

exp
(
−1
τ

E(v, h)
)

= − log
(

p(v)Z
)

= − log p(v)− log Z

= −
(

log p(v)− log Z
)

∑
h

p(h|v)

= −∑
h

(
p(h|v)

(
log p(v)− log Z

))
= −∑

h

(
p(h|v)

(
log p(v, h)− log p(h|v)− log Z

))
= −∑

h

(
p(h|v)

(
log
(

p(v, h)Z
)
− log p(h|v)

))
= −∑

h

(
p(h|v)

(
E(v, h)− log p(h|v)

))
= −∑

h
p(h|v)E(v, h)−H

(
p(h|v)

)
where H

(
p(h|v)

)
is the entropy of p(h|v).

B Analyzing Dynamics on Families
of Auto-encoders

B.1 Gated Auto-Encoder Scoring

B.1.1 Vector field representation

.

To check that the vector field can be written as the derivative of a scalar

field, we can submit to Poincaré’s integrability criterion: For some open,

simple connected set U , a continuously differentiable function F : U → <m

defines a gradient field if and only if

∂Fi(y)
∂yj

=
∂Fj(y)

∂yi
, ∀i, j = 1 · · · n.

Considering the GAE, note that ith component of the decoder ri(y|x) can be

rewritten as

ri(y|x) = (WY
·i)

T(WXx� (WH)Th(y, x)) = (WY
·i �WXx)T(WH)Th(y, x).

The derivatives of ri(y|x)− yi with respect to yj are

∂ri(y|x)
∂yj

=(WY
·i �WXx)T(WH)T ∂h(x, y)

∂yj
=

∂rj(y|x)
∂yi

∂h(y, x)
∂yj

=
∂h(u)

∂u
WH(WY

·j �WXx) (B.1)

where u = WH((WYy)� (WXx)). By substituting Equation B.1 into ∂Fi
∂yj

,
∂Fj
∂yi

,

we have

∂Fi
∂yj

=
∂ri(y|x)

∂yj
−δij =

∂rj(y|x)
∂yi

−δij =
∂Fj

∂yi

59

60 Analyzing Dynamics on Families of Auto-encoders

where δij = 1 for i = j and 0 for i 6= j. Similarly, the derivatives of ri(y|x)− yi

with respect to xj are

∂ri(y|x)
∂xj

=(WY
·i �WX

·j)
T(WH)Th(x, y) + (WY

·i �WXx)(WH)T ∂h
∂xj

=
∂rj(y|x)

∂xi
,

∂h(y, x)
∂xj

=
∂h(u)

∂u
WH(WY

·j �WXx). (B.2)

By substituting Equation B.2 into ∂Fi
∂xj

,
∂Fj
∂xi

, this yields

∂Fi
∂xj

=
∂ri(x|y)

∂xj
=

∂rj(x|y)
∂xi

=
∂Fj

∂xi
.

B.1.2 Deriving an Energy Function

Integrating out the GAE’s trajectory, we have

E(y|x) =
∫
C
(r(y|x)− y)dy

=
∫

WY
((

WXx)�WHh(u
))

dy−
∫

ydy

=WY
((

WXx
)
�WH

∫
h (u) du

)
−
∫

ydy, (B.3)

where u is an auxiliary variable such that u = WH((WYy) � (WXx)) and
du
dy = WH(WY � (WXx⊗ 1D)), where ⊗ is the Kronecker product. Consider

the symmetric objective function, which is defined in Equation 2.30. Then we

have to also consider the vector field system where both symmetric cases x|y
and y|x are valid. As mentioned in Section 3.1.1, let ξ = [x; y] and γ = [y; x].

As well, let Wξ = diag(WX, WY) and Wγ = diag(WY, WX) where they are

block diagonal matrices. Consequently, the vector field becomes

F(ξ|γ) = r(ξ|γ)− ξ, (B.4)

and the energy function becomes

E(ξ|γ) =
∫
(r(ξ|γ)− ξ)dξ

=
∫
(Wξ)T((Wγγ)� (WH)Th(u))dξ −

∫
ξdξ

=(Wξ)T((Wγγ)� (WH)T
∫

h(u)du)−
∫

ξdξ

Relation to other types of Restricted Boltzmann Machines 61

where u is an auxiliary variable such that u = WH ((Wξ ξ)� (Wγγ)
)
. Then

du
dξ

= WH
(

Wξ � (Wγγ⊗ 1D)
)

.

Moreover, note that the decoder can be re-formulated as

r(ξ|γ) = (Wξ)T(Wγγ� (WH)Th(ξ, γ))

=
(
(Wξ)T � (Wγγ⊗ 1D)

)
(WH)Th(ξ, γ).

Re-writing the first term of Equation B.3 in terms of the auxiliary variable u,

the energy reduces to

E(ξ|γ) =
(
(Wξ)T � (Wγγ⊗ 1D)

)
(WH)T

∫
h(u)

(
WH(Wξ � (Wγγ⊗ 1D))

)−1
du−

∫
ξdξ

=
(
(Wξ)T � (Wγγ⊗ 1D)

)
(WH)T

(
(Wξ � (Wγγ⊗ 1D))WH

)−T ∫
h(u)du−

∫
ξdξ

=
∫

h(u)du−
∫

ξdξ

=
∫

h(u)du− 1
2

ξ2 + const.

B.2 Relation to other types of Restricted Boltzmann Machines

B.2.1 Gated Auto-encoder and Factored Gated Conditional
Restricted Boltzmann Machines

Suppose that the hidden activation function is a sigmoid. Moreover, we define

our Gated Auto-encoder to consist of an encoder h(·) and decoder r(·) such

that

h(x, y) = h(WH((WXx)� (WYy)) + b)

r(x|y, h) = (WX)T((WYy)� (WH)Th(x, y)) + a,

where θ = {WH , WX, WY, b} is the parameters of the model. Note that the

weights are not tied in this case. The energy function for the Gated Auto-

encoder will be:

Eσ(x|y) =
∫
(1 + exp (−WH(WXx)� (WYy)− b))−1du− x2

2
+ ax + const

= ∑
k

log (1 + exp (−WH
k· (W

Xx)� (WYy)− bk))−
x2

2
+ ax + const.

62 Analyzing Dynamics on Families of Auto-encoders

Now consider the free energy of a Factored Gated Conditional Restricted

Boltzmann Machine (FCRBM).

The energy function of a FCRBM with Gaussian visible units and Bernoulli

hidden units is defined by

E(x, h|y) = (a− x)2

2σ2 − bh−∑
f

WX
f ·x�WY

f ·y�WH
f ·h.

Given y, the conditional probability density assigned by the FCRBM to data

point x is

p(x|y) = ∑h exp−(E(x, h|y))
Z(y)

=
exp (−F(x|y))

Z(y)

−F(x|y) = log

(
∑
h

exp (−E(x, h|y))
)

where Z(y) = ∑x,h exp (E(x, h|y)) is the partition function and F(x|y) is the

free energy function. Expanding the negative of the free energy function,

which is the potential function, the equation becomes

−F(x|y) = log ∑
h

exp (−E(x, h|y))

= log ∑
h

exp

(
−(a− x)2

2σ2 + bh + ∑
f

WX
f ·x�WY

f ·y�WH
f ·h

)

=− (a− x)2

2σ2 + log

(
∑
h

exp

(
bh + ∑

f
WX

f ·x�WY
f ·y�WH

f ·h

))

=− (a− x)2

2σ2 + log

(
∑
h

∏
k

exp

(
bkhk + ∑

f
(WX

f ·x�WY
f ·y)�WH

f khk

))

=− (a− x)2

2σ2 + ∑
k

log

(
1 + exp

(
bk + ∑

f

(
(WH

f k)
T(WXx�WYy)

)))
.

Note that we can center the data by subtracting mean of x and dividing by its

standard deviation, and therefore assume that σ2 = 1. Substituting, we have

−F(x|y) =− (a− x)2

2
+ ∑

k
log

(
1 + exp

(
−bk −∑

f
(WH

f k)
T(WXx�WYy)

))

=∑
k

log

(
1 + exp

(
bk + ∑

f
(WH

f k)
T(WXx�WYy)

))
− a2 + ax− x2

2

=∑
k

log

(
1 + exp

(
bk + ∑

f
(WH

f k)
T(WXx�WYy)

))
+ ax− x2

2
+ const

Relation to other types of Restricted Boltzmann Machines 63

Letting WH = (WH)T , formulation becomes

= ∑
k

log

(
1 + exp

(
bk + ∑

f
WH

k f (W
Xx�WYy)

))
+ ax− x2

2
+ const

Hence, the Conditional Gated auto-encoder and the FCRBM are equal up to a

constant.

B.2.2 Mean-covariance Auto-encoder and mean-covariance Re-
stricted Boltzmann Machines

Theorem 2. Consider a covariance auto-encoder with an encoder and decoder,

h(x, x) = h(WH((WFx)2) + b)

r(x|y = x, h) = (WF)T(WFy� (WH)Th(x, y)) + a,

where θ = {WF, WH , a, b} are the parameters of the model. Moreover, consider a

covariance Restricted Boltzmann Machine with Gaussian distribution over the visibles

and Bernoulli distribution over the hiddens, such that its energy function is defined by

Ec(x, h) =
(a− x)2

σ2 −∑
f

Ph(Cx)2 − bh,

where θ = {P, C, a, b} are its parameters. Then the energy function for a covariance

Auto-encoder with dynamics r(x|y)− x is equivalent to the free energy of a covariance

Restricted Boltzmann Machine. The energy function of the covariance Auto-encoder

is

E(x, x) = ∑
k

log(1 + exp(WH(WFx)2 + b))− x2 + const (B.5)

Proof. Note that the covariance auto-encoder is the same as a regular Gated

Auto-encoder, but setting y = x and making the factor loading matrices the

same, i.e. WF = WY = WX. Then applying the general energy equation for

GAE, Equation 3.3, to the covariance auto-encoder, we get

E(x, x) =
∫

h(u)du− 1
2

x2 + const

=∑
k

log(1 + exp(WH(WFx)2 + b))− x2 + ax + const, (B.6)

where u = WH(WFx)2 + b.

64 Analyzing Dynamics on Families of Auto-encoders

Now consider the free energy of the mean-covariance Restricted Boltzmann

Machine (mcRBM) with Gaussian distribution over the visible units and

Bernoulli distribution over the hidden units:

−F(x|y) = log ∑
h

exp (−E(x, h|y))

= log ∑
h

exp
(
− (a− x)2

σ2 + (Ph)(Cx)2 + bh
)

= log ∑
h

∏
k

exp

(
− (a− x)2

σ2 + ∑
f
(Pf khk)(Cx)2 + bkhk

)

=∑
k

log

(
1 + exp

(
∑

f
(Pf khk)(Cx)2

))
− (a− x)2

σ2 .

As before, we can center the data by subtracting mean of x and dividing by its

standard deviation, and therefore assume that σ2 = 1. Substituting, we have

= ∑
k

log

(
1 + exp

(
∑

f
(Pf khk)(Cx)2

))
− (a− x)2. (B.7)

Letting WH = PT and WF = C, we get

= ∑
k

log

(
1 + exp

(
∑

f
(Pf khk)(Cx)2

))
− x2 + ax + const. (B.8)

Therefore, the two equations are equivalent.

C Training Energy-based Models
Under the Various Kinds of Dy-
namics

C.1 Minimum Probability Flow

C.1.1 Dynamics of The Model

Theorem 1. Suppose p(∞)
j is the probability of state j and p(∞)

i is the probability of

state i. Let the transition matrix be

Γij = gij exp
(o(Fi − Fj) + 1

2
(Fj − Fi)

)
(C.1)

such that o(·) is any odd function, where gij is the symmetric connectivity between

the states i and j. Then this transition matrix satisfies detailed balance in Equation

C.2.

Proof. By cancalling out the partition function, the detailed balance Equation

C.2 can be formulated to be

Γji exp (−Fi) = Γij exp (−Fj) (C.2)

where Fi = F(v = i; θ) We substitute transition matrix defined in Equation 4.5,

65

66 Training Energy-based Models Under the Various Kinds of Dynamics

then we get the following after straight forward formula manipulation.

Γji exp (−Fi)/Γij exp (−Fj)) = 1

exp
(o(Fi − Fj) + 1

2
(Fj − Fi)− Fi

)
/ exp

(o(Fj − Fi) + 1
2

(Fi − Fj)− Fj

)
= 1

exp
(o(Fi − Fj) + 1

2
(Fj − Fi)− Fi −

o(Fj − Fi) + 1
2

(Fi − Fj) + Fj

)
= 1

o(Fi − Fj) + 1
2

(Fj − Fi)− Fi −
o(Fj − Fi) + 1

2
(Fi − Fj) + Fj = 0

(Fi − Fj)

(o(Fi − Fj) + 1
2

+
o(Fj − Fi) + 1

2
− 1
)
= 0

(Fi − Fj)

(o(Fi − Fj)

2
+

o(Fj − Fi)

2

)
= 0

Notice that since o(·) is an odd function, this makes the term
(o(Fi−Fj)

2 +
o(Fj−Fi)

2
)
= 0. Therefore, the detailed balance criterion is satisfied.

	Title
	Abstract
	Contents
	Acknowledgments
	Publications
	Notation
	Introduction
	Background & Related work
	Auto-encoders
	Restricted Boltzmann Machines
	Gaussian-Bernoulli Restricted Boltzmann Machines
	Training Restricted Boltzmann Machines

	Higher-order Generative Models
	Gated Auto-encoders
	Mean Covariance Auto-encoders
	Factored Gated Restricted Boltzmann Machines
	Mean-Covariance Restricted Boltzmann Machines

	Analyzing Dynamics on Families of Auto-encoders
	Gated Auto-Encoder Scoring
	Vector field representation
	Scoring the GAE

	Relationship to Restricted Boltzmann Machines
	Gated Auto-encoder and Factored Gated Conditional Restricted Boltzmann Machines
	Mean-Covariance Auto-encoder and Mean-covariance Restricted Boltzmann Machines

	Classification with Gated Auto-encoders
	Classification using class-specific gated auto-encoders
	Multi-label classification via optimization in label space

	Discussion

	Training Energy-based Models Under Various Kinds of Dynamics
	Minimum Probabilty Flow
	Dynamics of the Model
	Form of the Transition Matrix

	Probability Flow Rates
	1-bit flip connections
	Factorized Minimum Probability Flow
	Persistent Minimum Probability Flow

	Experiments
	MNIST - exact log likelihood
	MNIST - estimating log likelihood
	Caltech 101 Silhouettes - estimating log likelihood

	Discussion

	Summary
	References
	Background & Related Work
	Auto-encoders
	Restricted Boltzmann Machines

	Analyzing Dynamics on Families of Auto-encoders
	Gated Auto-Encoder Scoring
	Vector field representation
	Deriving an Energy Function

	Relation to other types of Restricted Boltzmann Machines
	Gated Auto-encoder and Factored Gated Conditional Restricted Boltzmann Machines
	Mean-covariance Auto-encoder and mean-covariance Restricted Boltzmann Machines

	Training Energy-based Models Under the Various Kinds of Dynamics
	Minimum Probability Flow
	Dynamics of The Model

