Supplementary Material for "Scoring and Classifying with Gated Auto-encoders"

Daniel Jiwoong Im, and Graham W. Taylor

School of Engineering University of Guelph Guelph, On, Canada {imj,gwtaylor}@uoguelph.ca

1 Gated Auto-encoder Scoring

1.1 Vector field representation

To check that the vector field can be written as the derivative of a scalar field, we can submit to Poincaré's integrability criterion: For some open, simple connected set \mathcal{U} , a continuously differentiable function $F: \mathcal{U} \to \mathbb{R}^m$ defines a gradient field if and only if

$$\frac{\partial F_i(\mathbf{y})}{\partial y_i} = \frac{\partial F_j(\mathbf{y})}{\partial y_i}, \ \forall i, j = 1 \cdots n.$$

Considering the GAE, note that i^{th} component of the decoder $r_i(\mathbf{y}|\mathbf{x})$ can be rewritten as

$$r_i(\mathbf{y}|\mathbf{x}) = (W_{\cdot i}^Y)^T (W^X \mathbf{x} \odot (W^H)^T h(\mathbf{y}, \mathbf{x})) = (W_{\cdot i}^Y \odot W^X \mathbf{x})^T (W^H)^T h(\mathbf{y}, \mathbf{x}).$$

The derivatives of $r_i(\mathbf{y}|\mathbf{x}) - y_i$ with respect to y_j are

$$\frac{\partial r_i(\mathbf{y}|\mathbf{x})}{\partial y_j} = (W_{\cdot i}^Y \odot W^X \mathbf{x})^T (W^H)^T \frac{\partial h(\mathbf{x}, \mathbf{y})}{\partial y_j} = \frac{\partial r_j(\mathbf{y}|\mathbf{x})}{\partial y_i}$$
$$\frac{\partial h(\mathbf{y}, \mathbf{x})}{\partial y_j} = \frac{\partial h(\mathbf{u})}{\partial \mathbf{u}} W^H (W_{\cdot j}^Y \odot W^X \mathbf{x})$$
(1)

where $\mathbf{u} = W^H((W^Y \mathbf{y}) \odot (W^X \mathbf{x}))$. By substituting Equation 1 into $\frac{\partial F_i}{\partial y_j}, \frac{\partial F_j}{\partial y_i}$, we have

$$\frac{\partial F_i}{\partial y_j} = \frac{\partial r_i(\mathbf{y}|\mathbf{x})}{\partial y_j} - \delta_{ij} = \frac{\partial r_j(\mathbf{y}|\mathbf{x})}{\partial y_i} - \delta_{ij} = \frac{\partial F_j}{\partial y_i}$$

where $\delta_{ij} = 1$ for i = j and 0 for $i \neq j$. Similarly, the derivatives of $r_i(\mathbf{y}|\mathbf{x}) - y_i$ with respect to x_j are

$$\frac{\partial r_i(\mathbf{y}|\mathbf{x})}{\partial x_j} = (W_{\cdot i}^Y \odot W_{\cdot j}^X)^T (W^H)^T h(\mathbf{x}, \mathbf{y}) + (W_{\cdot i}^Y \odot W^X \mathbf{x}) (W^H)^T \frac{\partial h}{\partial x_j} = \frac{\partial r_j(\mathbf{y}|\mathbf{x})}{\partial x_i},$$
$$\frac{\partial h(\mathbf{y}, \mathbf{x})}{\partial x_j} = \frac{\partial h(\mathbf{u})}{\partial \mathbf{u}} W^H (W_{\cdot j}^Y \odot W^X \mathbf{x}).$$
(2)

By substituting Equation 2 into $\frac{\partial F_i}{\partial x_j}, \frac{\partial F_j}{\partial x_i}$, this yields

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial r_i(\mathbf{x}|\mathbf{y})}{\partial x_j} = \frac{\partial r_j(\mathbf{x}|\mathbf{y})}{\partial x_i} = \frac{\partial F_j}{\partial x_i}.$$

1.2 Deriving an Energy Function

Integrating out the GAE's trajectory, we have

$$E(\mathbf{y}|\mathbf{x}) = \int_{\mathcal{C}} (r(\mathbf{y}|\mathbf{x}) - \mathbf{y}) d\mathbf{y}$$

= $\int W^{Y} \left(\left(W^{X} \mathbf{x} \right) \odot W^{H} h(\mathbf{u}) \right) d\mathbf{y} - \int \mathbf{y} d\mathbf{y}$
= $W^{Y} \left(\left(W^{X} \mathbf{x} \right) \odot W^{H} \int h(\mathbf{u}) d\mathbf{u} \right) - \int \mathbf{y} d\mathbf{y},$ (3)

where **u** is an auxiliary variable such that $\mathbf{u} = W^H((W^Y \mathbf{y}) \odot (W^X \mathbf{x}))$ and $\frac{d\mathbf{u}}{d\mathbf{y}} = W^H(W^Y \odot (W^X \mathbf{x} \otimes \mathbf{1}_D))$, where \otimes is the Kronecker product. Consider the symmetric objective function, which is defined in Equation ??. Then we have to also consider the vector field system where both symmetric cases $\mathbf{x}|\mathbf{y}$ and $\mathbf{y}|\mathbf{x}$ are valid. As mentioned in Section 3.1, let $\xi = [\mathbf{x}; \mathbf{y}]$ and $\gamma = [\mathbf{y}; \mathbf{x}]$. As well, let $W^{\xi} = \text{diag}(W^X, W^Y)$ and $W^{\gamma} = \text{diag}(W^Y, W^X)$ where they are block diagonal matrices. Consequently, the vector field becomes

$$F(\boldsymbol{\xi}|\boldsymbol{\gamma}) = r(\boldsymbol{\xi}|\boldsymbol{\gamma}) - \boldsymbol{\xi},\tag{4}$$

and the energy function becomes

$$\begin{split} E(\boldsymbol{\xi}|\boldsymbol{\gamma}) &= \int (r(\boldsymbol{\xi}|\boldsymbol{\gamma}) - \boldsymbol{\xi}) d\boldsymbol{\xi} \\ &= \int (W^{\boldsymbol{\xi}})^T ((W^{\boldsymbol{\gamma}} \boldsymbol{\gamma}) \odot (W^H)^T h(\boldsymbol{u})) d\boldsymbol{\xi} - \int \boldsymbol{\xi} d\boldsymbol{\xi} \\ &= (W^{\boldsymbol{\xi}})^T ((W^{\boldsymbol{\gamma}} \boldsymbol{\gamma}) \odot (W^H)^T \int h(\boldsymbol{u}) d\boldsymbol{u}) - \int \boldsymbol{\xi} d\boldsymbol{\xi} \end{split}$$

where \boldsymbol{u} is an auxiliary variable such that $\boldsymbol{u} = W^H \left((W^{\xi} \boldsymbol{\xi}) \odot (W^{\gamma} \boldsymbol{\gamma}) \right)$. Then

$$\frac{d\boldsymbol{u}}{d\boldsymbol{\xi}} = W^H \left(W^{\boldsymbol{\xi}} \odot \left(W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \boldsymbol{1}_D \right) \right).$$

Moreover, note that the decoder can be re-formulated as

$$r(\boldsymbol{\xi}|\boldsymbol{\gamma}) = (W^{\boldsymbol{\xi}})^T (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \odot (W^H)^T h(\boldsymbol{\xi}, \boldsymbol{\gamma})) = \left((W^{\boldsymbol{\xi}})^T \odot (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \mathbf{1}_D) \right) (W^H)^T h(\boldsymbol{\xi}, \boldsymbol{\gamma}).$$

Re-writing the first term of Equation 3 in terms of the auxiliary variable u, the energy reduces to

$$\begin{split} E(\boldsymbol{\xi}|\boldsymbol{\gamma}) &= \left((W^{\boldsymbol{\xi}})^T \odot (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \mathbf{1}_D) \right) (W^H)^T \int h(\boldsymbol{u}) \left(W^H (W^{\boldsymbol{\xi}} \odot (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \mathbf{1}_D)) \right)^{-1} d\boldsymbol{u} - \int \boldsymbol{\xi} d\boldsymbol{\xi} \\ &= \left((W^{\boldsymbol{\xi}})^T \odot (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \mathbf{1}_D) \right) (W^H)^T \left((W^{\boldsymbol{\xi}} \odot (W^{\boldsymbol{\gamma}} \boldsymbol{\gamma} \otimes \mathbf{1}_D)) W^H \right)^{-T} \int h(\boldsymbol{u}) d\boldsymbol{u} - \int \boldsymbol{\xi} d\boldsymbol{\xi} \\ &= \int h(\boldsymbol{u}) d\boldsymbol{u} - \int \boldsymbol{\xi} d\boldsymbol{\xi} \\ &= \int h(\boldsymbol{u}) d\boldsymbol{u} - \frac{1}{2} \boldsymbol{\xi}^2 + \text{const.} \end{split}$$

2 Relation to other types of Restricted Boltzmann Machines

2.1 Gated Auto-encoder and Factored Gated Conditional Restricted Boltzmann Machines

Suppose that the hidden activation function is a sigmoid. Moreover, we define our Gated Auto-encoder to consists of an encoder $h(\cdot)$ and decoder $r(\cdot)$ such that

$$h(\mathbf{x}, \mathbf{y}) = h(W^H((W^X \mathbf{x}) \odot (W^Y \mathbf{y})) + \mathbf{b})$$

$$r(\mathbf{x}|\mathbf{y}, h) = (W^X)^T((W^Y \mathbf{y}) \odot (W^H)^T h(\mathbf{x}, \mathbf{y})) + \mathbf{a},$$

where $\theta = \{W^H, W^X, W^Y, \mathbf{b}\}$ is the parameters of the model. Note that the weights are not tied in this case. The energy function for the Gated Auto-encoder will be:

$$E_{\sigma}(\mathbf{x}|\mathbf{y}) = \int (1 + \exp\left(-W^{H}(W^{X}\mathbf{x}) \odot (W^{Y}\mathbf{y}) - \mathbf{b}\right))^{-1} d\mathbf{u} - \frac{\mathbf{x}^{2}}{2} + \mathbf{a}\mathbf{x} + \text{const}$$
$$= \sum_{k} \log\left(1 + \exp\left(-W^{H}_{k \cdot}(W^{X}\mathbf{x}) \odot (W^{Y}\mathbf{y}) - b_{k}\right)\right) - \frac{\mathbf{x}^{2}}{2} + \mathbf{a}\mathbf{x} + \text{const.}$$

Now consider the free energy of a Factored Gated Conditional Restricted Boltzmann Machine (FCRBM).

The energy function of a FCRBM with Gaussian visible units and Bernoulli hidden units is defined by

$$E(\mathbf{x}, \mathbf{h} | \mathbf{y}) = \frac{(\mathbf{a} - \mathbf{x})^2}{2\sigma^2} - \mathbf{b}\mathbf{h} - \sum_f W_{f}^X \mathbf{x} \odot W_{f}^Y \mathbf{y} \odot W_{f}^H \mathbf{h}.$$

Given $\mathbf{y},$ the conditional probability density assigned by the FCRBM to data point \mathbf{x} is

$$\begin{split} p(\mathbf{x}|\mathbf{y}) &= \frac{\sum_{\mathbf{h}} \exp - (E(\mathbf{x}, \mathbf{h}|\mathbf{y}))}{Z(\mathbf{y})} = \frac{\exp \left(-F(\mathbf{x}|\mathbf{y})\right)}{Z(\mathbf{y})} \\ -F(\mathbf{x}|\mathbf{y}) &= \log \left(\sum_{\mathbf{h}} \exp \left(-E(\mathbf{x}, \mathbf{h}|\mathbf{y})\right)\right) \end{split}$$

where $Z(\mathbf{y}) = \sum_{\mathbf{x},\mathbf{h}} \exp(E(\mathbf{x},\mathbf{h}|\mathbf{y}))$ is the partition function and $F(\mathbf{x}|\mathbf{y})$ is the free energy function. Expanding the free energy function, we get

$$\begin{aligned} -F(\mathbf{x}|\mathbf{y}) &= \log \sum_{\mathbf{h}} \exp\left(-E(\mathbf{x}, \mathbf{h}|\mathbf{y})\right) \\ &= \log \sum_{\mathbf{h}} \exp\left(\frac{-(\mathbf{a} - \mathbf{x})^2}{2\sigma^2} + \mathbf{b}\mathbf{h} + \sum_{f} W_{f}^X \mathbf{x} \odot W_{f}^Y \mathbf{y} \odot W_{f}^H \mathbf{h}\right) \\ &= -\frac{(\mathbf{a} - \mathbf{x})^2}{2\sigma^2} + \log\left(\sum_{\mathbf{h}} \exp\left(\mathbf{b}\mathbf{h} + \sum_{f} W_{f}^X \mathbf{x} \odot W_{f}^Y \mathbf{y} \odot W_{f}^H \mathbf{h}\right)\right) \\ &= -\frac{(\mathbf{a} - \mathbf{x})^2}{2\sigma^2} + \log\left(\sum_{\mathbf{h}} \prod_{k} \exp\left(b_k h_k + \sum_{f} (W_{f}^X \mathbf{x} \odot W_{f}^Y \mathbf{y}) \odot W_{fk}^H h_k\right)\right) \\ &= -\frac{(\mathbf{a} - \mathbf{x})^2}{2\sigma^2} + \sum_{k} \log\left(1 + \exp\left(b_k + \sum_{f} ((W_{fk}^H)^T (W^X \mathbf{x} \odot W^Y \mathbf{y}))\right)\right) \end{aligned}$$

Note that we can center the data by subtracting mean of \mathbf{x} and dividing by its standard deviation, and therefore assume that $\sigma^2 = 1$. Substituting, we have

$$-F(\mathbf{x}|\mathbf{y}) = -\frac{(\mathbf{a} - \mathbf{x})^2}{2} + \sum_k \log \left(1 + \exp\left(-b_k - \sum_f (W_{fk}^H)^T (W^X \mathbf{x} \odot W^Y \mathbf{y})\right)\right)$$
$$= \sum_k \log \left(1 + \exp\left(b_k + \sum_f (W_{fk}^H)^T (W^X \mathbf{x} \odot W^Y \mathbf{y})\right)\right) - \mathbf{a}^2 + \mathbf{a}\mathbf{x} - \frac{\mathbf{x}^2}{2}$$
$$= \sum_k \log \left(1 + \exp\left(b_k + \sum_f (W_{fk}^H)^T (W^X \mathbf{x} \odot W^Y \mathbf{y})\right)\right) + \mathbf{a}\mathbf{x} - \frac{\mathbf{x}^2}{2} + \text{const}$$

Letting $W^H = (W^H)^T$, we get

$$=\sum_{k} \log \left(1 + \exp \left(b_{k} + \sum_{f} W_{kf}^{H}(W^{X} \mathbf{x} \odot W^{Y} \mathbf{y})\right)\right) + \mathbf{a}\mathbf{x} - \frac{\mathbf{x}^{2}}{2} + \text{const}$$

Hence, the Conditional Gated Auto-encoder and the FCRBM are equal up to a constant.

2.2 Gated Auto-encoder and mean-covariance Restricted Boltzmann Machines

Theorem 1. Consider a covariance auto-encoder with an encoder and decoder,

$$\begin{split} h(\mathbf{x}, \mathbf{x}) &= h(W^H((W^F \mathbf{x})^2) + \mathbf{b}) \\ r(\mathbf{x} | \mathbf{y} = \mathbf{x}, h) &= (W^F)^T (W^F \mathbf{y} \odot (W^H)^T h(\mathbf{x}, \mathbf{y})) + \mathbf{a}, \end{split}$$

where $\theta = \{W^F, W^H, \mathbf{a}, \mathbf{b}\}$ are the parameters of the model. Moreover, consider a covariance Restricted Boltzmann Machine with Gaussian distribution over the visibles and Bernoulli distribution over the hiddens, such that its energy function is defined by

$$E^{c}(\mathbf{x}, \mathbf{h}) = \frac{(\mathbf{a} - \mathbf{x})^{2}}{\sigma^{2}} - \sum_{f} P\mathbf{h}(C\mathbf{x})^{2} - \mathbf{b}\mathbf{h},$$

where $\theta = \{P, C, \mathbf{a}, \mathbf{b}\}$ are its parameters. Then the energy function for a covariance Auto-encoder with dynamics $r(\mathbf{x}|\mathbf{y}) - \mathbf{x}$ is equivalent to the free energy of a covariance Restricted Boltzmann Machine. The energy function of the covariance Auto-encoder is

$$E(\mathbf{x}, \mathbf{x}) = \sum_{k} \log(1 + \exp(W^{H}(W^{F}\mathbf{x})^{2} + \mathbf{b})) - \mathbf{x}^{2} + const$$
(5)

Proof. Note that the covariance auto-encoder is the same as a regular Gated Auto-encoder, but setting $\mathbf{y} = \mathbf{x}$ and making the factor loading matrices the same, i.e. $W^F = W^Y = W^X$. Then applying the general energy equation for GAE, Equation ??, to the covariance auto-encoder, we get

$$E(\mathbf{x}, \mathbf{x}) = \int h(\mathbf{u}) d\mathbf{u} - \frac{1}{2} \mathbf{x}^2 + \text{const}$$

= $\sum_k \log(1 + \exp(W^H (W^F \mathbf{x})^2 + \mathbf{b})) - \mathbf{x}^2 + \mathbf{a}\mathbf{x} + \text{const},$ (6)

where $\mathbf{u} = W^H (W^F \mathbf{x})^2 + \mathbf{b}$.

Now consider the free energy of the mean-covariance Restricted Boltzmann Machine (mcRBM) with Gaussian distribution over the visible units and Bernoulli distribution over the hidden units:

$$-F(\mathbf{x}|\mathbf{y}) = \log \sum_{\mathbf{h}} \exp\left(-E(\mathbf{x}, \mathbf{h}|\mathbf{y})\right)$$
$$= \log \sum_{h} \exp\left(-\frac{(\mathbf{a} - \mathbf{x})^{2}}{\sigma^{2}} + (P\mathbf{h})(C\mathbf{x})^{2} + \mathbf{b}\mathbf{h}\right)$$
$$= \log \sum_{h} \prod_{k} \exp\left(-\frac{(\mathbf{a} - \mathbf{x})^{2}}{\sigma^{2}} + \sum_{f} (P_{fk}h_{k})(C\mathbf{x})^{2} + b_{k}h_{k}\right)$$
$$= \sum_{k} \log\left(1 + \exp\left(\sum_{f} (P_{fk}h_{k})(C\mathbf{x})^{2}\right)\right) - \frac{(\mathbf{a} - \mathbf{x})^{2}}{\sigma^{2}}.$$

As before, we can center the data by subtracting mean of \mathbf{x} and dividing by its standard deviation, and therefore assume that $\sigma^2 = 1$. Substituting, we have

$$=\sum_{k}\log\left(1+\exp\left(\sum_{f}(P_{fk}h_{k})(C\mathbf{x})^{2}\right)\right)-(\mathbf{a}-\mathbf{x})^{2}.$$
(7)

Letting $W^H = P^T$ and $W^F = C$, we get

$$=\sum_{k}\log\left(1+\exp\left(\sum_{f}(P_{fk}h_{k})(C\mathbf{x})^{2}\right)\right)-\mathbf{x}^{2}+\mathbf{a}\mathbf{x}+\text{const.}$$
(8)

Therefore, the two equations are equivalent.